Citation: WU Xiao-Min, MAO Jian, ZHOU Zhi-Peng, ZHANG Chen, BU Jing-Ting, LI Zhen. Building a High-Performance Supercapacitor with Nitrogen-Doped Graphene Quantum Dots/MOF-Derived Porous Carbon Nanosheets[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(7): 1298-1308. doi: 10.11862/CJIC.2020.139 shu

Building a High-Performance Supercapacitor with Nitrogen-Doped Graphene Quantum Dots/MOF-Derived Porous Carbon Nanosheets

  • Corresponding author: LI Zhen, lizhen@shu.edu.cn
  • Received Date: 27 December 2019
    Revised Date: 2 April 2020

Figures(7)

  • Co-MOF two-dimensional nanosheets were first grown on a carbon cloth by solution method, and MOFderived porous carbon nanosheets were obtained after high temperature annealing and etching process. Co-MOF derived porous carbon nanosheets/carbon cloths (CNSs/CC) was used as the carbon-based framework, and highly active nitrogen-doped graphene quantum dots (N-GQDs) were loaded by electrochemical deposition to prepare hierarchical porous structures N-GQD/CNS/CC composite material as electrode material for supercapacitors. The N-GQD/CNS/CC electrode, as a self-supporting and adhesive-free electrode, delivered a specific capacitance of 423 F·g-1 at 1 A·g-1. According to the mechanism of energy storage and capacitance contribution, the N-GQD/CNS/CC composite is an ideal supercapacitor electrode material with high capacitance, due to synergetic effect between CNS grown in situ on carbon fiber with high double-layer capacitance and N-GQDs loaded on the surface with high pseudo-capacitance. The highly conductive, hierarchical porous structure of the electrode material is beneficial to the electron transport and the diffusion of electrolyte ions, which presents good kinetic performance, high rate performance and rapid charge-discharge capability. A symmetrical supercapacitor based on N -GQD/CNS/CC electrode exhibited a high energy density of 250 W·kg-1 at power density of 7.9 Wh·kg-1, while the capacitance retention after 10 000 cycles reached 91.2%, which indicates that the N-GQD/CNS/CC composite is an all-carbon electrode material with stable electrochemical performance and high capacitance performance.
  • 加载中
    1. [1]

      Zhang C, Wei Y L, Cao P F, et al. Renewable Sustainable Energy Rev., 2018, 82:3091-3106  doi: 10.1016/j.rser.2017.10.030

    2. [2]

      CHEN Chan-Juan, HU Zhong-Ai, HU Ying -Ying, et al. Acta Phys.-Chim. Sin., 2014, 30(12):2256-2262  doi: 10.3866/PKU.WHXB201409302

    3. [3]

      ZHANG Xuan-Xuan, RAN Fen, FAN Hui-Li, et al. Acta Phys.-Chim. Sin., 2014, 30(5):881-890
       

    4. [4]

      TONG Yong-Li, DAI Mei-Zhen, XING Lei, et al. Acta Phys.-Chim. Sin., 2020, 36(7):1903046
       

    5. [5]

      DU Wei-Shi, LÜ Yao-Kang, CAI Zhi-Wei, et al. Acta Phys.-Chim. Sin., 2017, 33(9):1828-1837
       

    6. [6]

      May G J, Davidson A, Monahov B. J. Energy Storage, 2018, 15:145-157  doi: 10.1016/j.est.2017.11.008

    7. [7]

      Kazempour S J, Moghaddam M P, Haghifam M R, et al. Renew. Energy, 2009, 34(12):2630-2639  doi: 10.1016/j.renene.2009.04.027

    8. [8]

      Diaz-Gonzalez F, Sumper A, Gomis-Bellmunt O, et al. Renewable Sustainable Energy Rev., 2012, 16(4):2154-2171
       

    9. [9]

      Kaldellis J K, Zafirakis D. Energy, 2007, 32(12):2295-2305  doi: 10.1016/j.energy.2007.07.009

    10. [10]

      He D L, Zhao W, Li P, et al. Appl. Surf. Sci., 2019, 465:303312

    11. [11]

      LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, et al. Acta Phys.-Chim. Sin., 2017, 33(1):130-148
       

    12. [12]

      XIN Ran-Ran, MIAO Hang-Jin, JIANG Wei, et al. Chinese J. Inorg. Chem., 2019, 35(10):1781-1790  doi: 10.11862/CJIC.2019.222
       

    13. [13]

      Divya K C, Ostergaard J. Electr. Power Syst. Res., 2009, 79(4):511-520

    14. [14]

      GUO Nan-Nan, ZHANG Su, WANG Lu Xiang, et al. Acta Phys.-Chim. Sin., 2020, 36(2):1903055
       

    15. [15]

      Cao X H, Zheng B, Shi W H, et al. Adv. Mater., 2015, 27(32):4695-4701  doi: 10.1002/adma.201501310

    16. [16]

      Li X, Gu T L, Wei B Q. Nano Letti., 2012, 12(12):6366-6371  doi: 10.1021/nl303631e

    17. [17]

      Dahal B, Mukhiya T, Ojha G P, et al. Electrochim. Acta, 2019, 301:209-219  doi: 10.1016/j.electacta.2019.01.171

    18. [18]

      Li S M, Yang K, Ya P, et al. Appl. Surf. Sci., 2020, 503:144090  doi: 10.1016/j.apsusc.2019.144090

    19. [19]

      Li Z X, Yang B L, Kong L J, et al. Carbon, 2019, 144:540548

    20. [20]

      Jiang W C, Pan J Q, Liu X G. J. Power Sources, 2019, 409:13-23  doi: 10.1016/j.jpowsour.2018.10.086

    21. [21]

      JIA Zhao-Yang, LIU Mei-Nan, ZHAO XinLuo, et al. Acta Phys.-Chim. Sin., 2017, 33(12):2510-2516  doi: 10.3866/PKU.WHXB201705311

    22. [22]

      ZHU Jia-Yao, DONG Yue, ZHANG Su, et al. Acta Phys.-Chim. Sin., 2020, 36(2):1903052

    23. [23]

      Xue Q, Huang H, Wang L, et al. Nanoscale, 2013, 5(24):12098-12103  doi: 10.1039/c3nr03623e

    24. [24]

      Wang L, Wang Y L, Xu T, et al. Nat. Commun., 2014, 5:6367
       

    25. [25]

      Li Z, Cao L, Qin P, et al. Carbon, 2018, 139:67-75  doi: 10.1016/j.carbon.2018.06.042

    26. [26]

      Li Z, Liu X, Wang L, et al. Small, 2018, 14(39):1801498  doi: 10.1002/smll.201801498

    27. [27]

      Pan D Y, Huang H, Wang X Y, et al. J. Mater. Chem. A, 2014, 2(29):11454-11464  doi: 10.1039/C4TA01613K

    28. [28]

      Li Z, Bu F, Wei J J, et al. Nanoscale, 2018, 10(48):2287122883

    29. [29]

      Li Z, Li Y F, Wang L, et al. Electrochim. Acta, 2017, 235:561-569  doi: 10.1016/j.electacta.2017.03.147

    30. [30]

      Li Z, Qin P, Wang L, et al. Electrochim. Acta, 2016, 208:260266

    31. [31]

      Li Z, Wei J J, Ren J, et al. Carbon, 2019, 154:410-419  doi: 10.1016/j.carbon.2019.08.040

    32. [32]

      Ding Y C, Hu L H, He D C, et al. Chem. Eng. J., 2020, 380:122489  doi: 10.1016/j.cej.2019.122489

    33. [33]

      Li Q, Zhou J J, Liu R, et al. Dalton Trans., 2019, 48(46):17163-17168  doi: 10.1039/C9DT03821C

    34. [34]

      LIANG Xu, JIA Yu-Feng, LIU Zong-Huai, et al. Acta Phys.-Chim. Sin., 2020, 36(2):1903034
       

    35. [35]

      Wang N, Zhao P, Liang K, et al. Chem. Eng. J., 2017, 307:105-112  doi: 10.1016/j.cej.2016.08.074

    36. [36]

      Wei J, Zhou D D, Sun Z K, et al. Adv. Funct. Mater., 2013, 23(18):2322-2328  doi: 10.1002/adfm.201202764

    37. [37]

      Yang Q J, Liu Y, Yan M, et al. Chem. Eng. J., 2019, 370:666676

    38. [38]

      Brezesinski T, Wang J, Tolbert S H, et al. Nat. Mater., 2010, 9(2):146-151
       

    39. [39]

      Puthusseri D, Aravindan V, Madhavi S, et al. Energy Environ. Sci., 2014, 7(2):728-735
       

    40. [40]

      Gong C C, Wang X Z, Ma D H, et al. Electrochim. Acta, 2016, 220:331-339  doi: 10.1016/j.electacta.2016.10.120

    41. [41]

      He X J, Li R C, Qiu J S, et al. Carbon, 2012, 50(13):49114921

    42. [42]

      Ling Z, Wang Z Y, Zhang M D, et al. Adv. Funct. Mater., 2016, 26(1):111-119

    43. [43]

      WU Zhong-Yu, FAN Lei, TAO You-Rong, et al. Chinese J. Inorg. Chem., 2018, 34(7):1249-1260
       

    44. [44]

      Ma G F, Guo D Y, Sun K J, et al. RSC Adv., 2015, 5(79):64704-64710  doi: 10.1039/C5RA11179J

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    5. [5]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    8. [8]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    9. [9]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    10. [10]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    11. [11]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    14. [14]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    17. [17]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    18. [18]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    19. [19]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(44)
  • Abstract views(2911)
  • HTML views(1179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return