Citation: WU Yu, LIU Jia-Cheng. Self-Assembly with Two Zinc Porphyrins Coordination Polymers for Dye-Sensitized Solar Cells[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(7): 1283-1290. doi: 10.11862/CJIC.2020.137 shu

Self-Assembly with Two Zinc Porphyrins Coordination Polymers for Dye-Sensitized Solar Cells

Figures(10)

  • Two new zinc porphyrin with different donor units based Mn(Ⅱ) ion coordination polymers (CPsx, x=1, 2) have been designed, synthesized, and well-characterized. Two coordination polymers and anchor porphyrin (ZnPA) self-assembly by metal-ligand axial coordination to modify the nano-structured TiO2 electrode surface has been investigated in photoelectrochemical device. The assembled processes of CPsx-ZnPA on TiO2 surface were as follows:a porphyrin molecule (ZnPA) as anchoring group was immobilized on the TiO2 electrode surface through carboxylic groups, then the desired dye of CPsx was bound to the anchoring group through axially coordination bonded from porphyrin central Zn(Ⅱ) ions of CPsx and the N atom of ZnPA. Our results reveal that the self-assemblies devices show significantly improved photocurrent conversion efficiency. Particularly, CPs2 based solar cell displayed a PCE (power conversion efficiency) of 1.89%, and the Jsc was 4.82 mA·cm-2. This indicates that the supramolecular coordination polymers self-assembly strategy has been successfully applied in dye-sensitized solar cells (DSSC). Their optical performance and electrochemical impedance spectroscopy were also investigated to further understand the photoelectrochemical results. In addition, the assembled modes of the assemblies immobilized on TiO2 electrode surfaces were also verified by transmission electron microscopy (TEM).
  • 加载中
    1. [1]

      O'regan B, Grätzel M. Nature, 1991, 353:737-740  doi: 10.1038/353737a0

    2. [2]

      Xie Y S, Tang Y Y, Wu W J, et al. J. Am. Chem. Soc., 2015, 137:14055-14058  doi: 10.1021/jacs.5b09665

    3. [3]

      Urbani M, Grätzel M, Nazeeruddin M K, et al. Chem. Rev., 2014, 114:12330-12396  doi: 10.1021/cr5001964

    4. [4]

      Zhou H X, Yang L Q, Stuart A C, et al. Angew. Chem. Int. Ed., 2011, 50:2995-2998  doi: 10.1002/anie.201005451

    5. [5]

      Tang Y Y, Wang Y Q, Li X, et al. ACS Appl. Mater. Interfaces, 2015, 50:27976-27985

    6. [6]

      Wang Y Q, Chen B, Wu W J, et al. Angew. Chem. Int. Ed., 2014, 53:10779-10783  doi: 10.1002/anie.201406190

    7. [7]

      Takai A, Chkounda M, Eggenspiller A, et al. J. Am. Chem. Soc., 2010, 132:477-4489
       

    8. [8]

      Choi H, Kim H, Hwang S, et al. Sol. Energy Mater. Sol. Cells, 2011, 95:323-325  doi: 10.1016/j.solmat.2010.04.044

    9. [9]

      D'Souza F, Ito O. Chem. Soc. Rev., 2012, 41:86-96  doi: 10.1039/C1CS15201G

    10. [10]

      Tsuchiya Y, Yamano A, Shiraki T, et al. Chem. Lett., 2011, 40:99-101  doi: 10.1246/cl.2011.99

    11. [11]

      Lee C W, Lu H P, Reddy N M, et al. Dyes Pigm., 2011, 91:317-323  doi: 10.1016/j.dyepig.2011.04.010

    12. [12]

      Subbaiyan N K, Wijesinghe, C A, D'Souza F. J. Am. Chem. Soc., 2009, 131:14646-14647  doi: 10.1021/ja9067113

    13. [13]

      Choi M S, Yamazaki T, Yamazaki I, et al. Angew. Chem. Int. Ed., 2004, 43:150-158  doi: 10.1002/anie.200301665

    14. [14]

      Kim J K, Lee K, Coates N E. Science, 2007, 317:222-225  doi: 10.1126/science.1141711

    15. [15]

      Helgesen M, Søndergaard R, Krebs F C, et al. J. Mater. Chem., 2009, 20:36-60
       

    16. [16]

      Ma W, Yang C, Gong X, et al. Adv. Funct. Mater., 2005, 15:1617-1622  doi: 10.1002/adfm.200500211

    17. [17]

      Hayashi S, Tanaka M, Hayashi H, et al. J. Phys. Chem. C, 2008, 112:15576-15585

    18. [18]

      Tang Y Y, Wang Y Q, Li X, et al. ACS Appl. Mater. Interfaces, 2015, 7:27976-27985  doi: 10.1021/acsami.5b10624

    19. [19]

      D'Souza F, Smith P M, Zandler M E, et al. J. Am. Chem. Soc., 2004, 126:7898-7907  doi: 10.1021/ja030647u

    20. [20]

      Cao J, Liu J C, Deng W T, et al. Electrochim. Acta, 2013, 112:515-521  doi: 10.1016/j.electacta.2013.08.131

    21. [21]

      Wu Y, Zhang Q, Liu J C, et al. Org. Electron., 2017, 41:301306

    22. [22]

      Han F M, Yang J Y, Liu J C. Dalton Trans., 2016, 45:88628868

    23. [23]

      Trachsel D. Helv. Chim. Acta, 2002, 85:3019-3026  doi: 10.1002/1522-2675(200209)85:9<3019::AID-HLCA3019>3.0.CO;2-4

    24. [24]

      CAO Jing. Thesis for the Master of Northwest Normal University. 2014.

    25. [25]

      LIANG Li-Li. Thesis for the Master of Northwest Normal University. 2012.

    26. [26]

      LIU Hai-Yang, HU Xi-Ming, YING Xiao, et al. Chinese J. Inorg. Chem., 1998, 14(4):371-387
       

    27. [27]

      He C, Lin Z H, He Z, et al. Angew. Chem. Int. Ed., 2008, 47:877-881  doi: 10.1002/anie.200704206

    28. [28]

      Ray A, Banerjee S, Butcher R J, et al. Struct. Chem., 2008, 19:209-217  doi: 10.1007/s11224-007-9274-7
       

    29. [29]

      Mangalam N A, Sheeja S R, Kurup M R P. Polyhedron, 2010, 29:3318-3323  doi: 10.1016/j.poly.2010.09.007

    30. [30]

      WU Di, SHEN Zhen, YOU Xiao-Zeng, et al. Chinese J. Inorg. Chem., 2007, 23(1):114
       

    31. [31]

      Wang P, Zakeeruddin S M, Comte P, et al. J. Phys. Chem. B, 2003, 107:14336-14341  doi: 10.1021/jp0365965

    32. [32]

      Cai N, Wang Y L, Xu M F, et al. Adv. Funct. Mater., 2013, 23:1846-1854  doi: 10.1002/adfm.201202562

    33. [33]

      Palomares E, Martínez-Díaz M V, Haque S A, et al. Chem. Commun., 2004(18):2112-2113  doi: 10.1039/B407860H

    34. [34]

      Kira A, Umeyama T, Matano Y, et al. J. Am. Chem. Soc., 2009, 131(9):3198-3200  doi: 10.1021/ja8096465

    35. [35]

      Leondiadis L, Momenteau M. J. Org. Chem., 1989, 54(26):6135-6138  doi: 10.1021/jo00287a034

    36. [36]

      Seo K D, Lee M J, Song H M, et al. Dyes Pigm., 2012, 94(1):143-149  doi: 10.1016/j.dyepig.2011.12.006

    37. [37]

      Mathew S, Yella A, Gao P, et al. Nat. Chem., 2014, 6(3):242247
       

    38. [38]

      Wang Q, Moser J E, Grätzel M. J. Phys. Chem. B, 2005, 109(31):14945-14953  doi: 10.1021/jp052768h

    39. [39]

      Barea E M, Gónzalez-Pedro V, Ripollés-Sanchis, et al. J. Phys. Chem. C, 2011, 115(21):10898-10902  doi: 10.1021/jp2018378

  • 加载中
    1. [1]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    5. [5]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    11. [11]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    12. [12]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    13. [13]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    14. [14]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    15. [15]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    16. [16]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    17. [17]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    18. [18]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    19. [19]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    20. [20]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

Metrics
  • PDF Downloads(3)
  • Abstract views(251)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return