Citation: WU Yu, LIU Jia-Cheng. Self-Assembly with Two Zinc Porphyrins Coordination Polymers for Dye-Sensitized Solar Cells[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(7): 1283-1290. doi: 10.11862/CJIC.2020.137 shu

Self-Assembly with Two Zinc Porphyrins Coordination Polymers for Dye-Sensitized Solar Cells

Figures(10)

  • Two new zinc porphyrin with different donor units based Mn(Ⅱ) ion coordination polymers (CPsx, x=1, 2) have been designed, synthesized, and well-characterized. Two coordination polymers and anchor porphyrin (ZnPA) self-assembly by metal-ligand axial coordination to modify the nano-structured TiO2 electrode surface has been investigated in photoelectrochemical device. The assembled processes of CPsx-ZnPA on TiO2 surface were as follows:a porphyrin molecule (ZnPA) as anchoring group was immobilized on the TiO2 electrode surface through carboxylic groups, then the desired dye of CPsx was bound to the anchoring group through axially coordination bonded from porphyrin central Zn(Ⅱ) ions of CPsx and the N atom of ZnPA. Our results reveal that the self-assemblies devices show significantly improved photocurrent conversion efficiency. Particularly, CPs2 based solar cell displayed a PCE (power conversion efficiency) of 1.89%, and the Jsc was 4.82 mA·cm-2. This indicates that the supramolecular coordination polymers self-assembly strategy has been successfully applied in dye-sensitized solar cells (DSSC). Their optical performance and electrochemical impedance spectroscopy were also investigated to further understand the photoelectrochemical results. In addition, the assembled modes of the assemblies immobilized on TiO2 electrode surfaces were also verified by transmission electron microscopy (TEM).
  • 加载中
    1. [1]

      O'regan B, Grätzel M. Nature, 1991, 353:737-740  doi: 10.1038/353737a0

    2. [2]

      Xie Y S, Tang Y Y, Wu W J, et al. J. Am. Chem. Soc., 2015, 137:14055-14058  doi: 10.1021/jacs.5b09665

    3. [3]

      Urbani M, Grätzel M, Nazeeruddin M K, et al. Chem. Rev., 2014, 114:12330-12396  doi: 10.1021/cr5001964

    4. [4]

      Zhou H X, Yang L Q, Stuart A C, et al. Angew. Chem. Int. Ed., 2011, 50:2995-2998  doi: 10.1002/anie.201005451

    5. [5]

      Tang Y Y, Wang Y Q, Li X, et al. ACS Appl. Mater. Interfaces, 2015, 50:27976-27985

    6. [6]

      Wang Y Q, Chen B, Wu W J, et al. Angew. Chem. Int. Ed., 2014, 53:10779-10783  doi: 10.1002/anie.201406190

    7. [7]

      Takai A, Chkounda M, Eggenspiller A, et al. J. Am. Chem. Soc., 2010, 132:477-4489
       

    8. [8]

      Choi H, Kim H, Hwang S, et al. Sol. Energy Mater. Sol. Cells, 2011, 95:323-325  doi: 10.1016/j.solmat.2010.04.044

    9. [9]

      D'Souza F, Ito O. Chem. Soc. Rev., 2012, 41:86-96  doi: 10.1039/C1CS15201G

    10. [10]

      Tsuchiya Y, Yamano A, Shiraki T, et al. Chem. Lett., 2011, 40:99-101  doi: 10.1246/cl.2011.99

    11. [11]

      Lee C W, Lu H P, Reddy N M, et al. Dyes Pigm., 2011, 91:317-323  doi: 10.1016/j.dyepig.2011.04.010

    12. [12]

      Subbaiyan N K, Wijesinghe, C A, D'Souza F. J. Am. Chem. Soc., 2009, 131:14646-14647  doi: 10.1021/ja9067113

    13. [13]

      Choi M S, Yamazaki T, Yamazaki I, et al. Angew. Chem. Int. Ed., 2004, 43:150-158  doi: 10.1002/anie.200301665

    14. [14]

      Kim J K, Lee K, Coates N E. Science, 2007, 317:222-225  doi: 10.1126/science.1141711

    15. [15]

      Helgesen M, Søndergaard R, Krebs F C, et al. J. Mater. Chem., 2009, 20:36-60
       

    16. [16]

      Ma W, Yang C, Gong X, et al. Adv. Funct. Mater., 2005, 15:1617-1622  doi: 10.1002/adfm.200500211

    17. [17]

      Hayashi S, Tanaka M, Hayashi H, et al. J. Phys. Chem. C, 2008, 112:15576-15585

    18. [18]

      Tang Y Y, Wang Y Q, Li X, et al. ACS Appl. Mater. Interfaces, 2015, 7:27976-27985  doi: 10.1021/acsami.5b10624

    19. [19]

      D'Souza F, Smith P M, Zandler M E, et al. J. Am. Chem. Soc., 2004, 126:7898-7907  doi: 10.1021/ja030647u

    20. [20]

      Cao J, Liu J C, Deng W T, et al. Electrochim. Acta, 2013, 112:515-521  doi: 10.1016/j.electacta.2013.08.131

    21. [21]

      Wu Y, Zhang Q, Liu J C, et al. Org. Electron., 2017, 41:301306

    22. [22]

      Han F M, Yang J Y, Liu J C. Dalton Trans., 2016, 45:88628868

    23. [23]

      Trachsel D. Helv. Chim. Acta, 2002, 85:3019-3026  doi: 10.1002/1522-2675(200209)85:9<3019::AID-HLCA3019>3.0.CO;2-4

    24. [24]

      CAO Jing. Thesis for the Master of Northwest Normal University. 2014.

    25. [25]

      LIANG Li-Li. Thesis for the Master of Northwest Normal University. 2012.

    26. [26]

      LIU Hai-Yang, HU Xi-Ming, YING Xiao, et al. Chinese J. Inorg. Chem., 1998, 14(4):371-387
       

    27. [27]

      He C, Lin Z H, He Z, et al. Angew. Chem. Int. Ed., 2008, 47:877-881  doi: 10.1002/anie.200704206

    28. [28]

      Ray A, Banerjee S, Butcher R J, et al. Struct. Chem., 2008, 19:209-217  doi: 10.1007/s11224-007-9274-7
       

    29. [29]

      Mangalam N A, Sheeja S R, Kurup M R P. Polyhedron, 2010, 29:3318-3323  doi: 10.1016/j.poly.2010.09.007

    30. [30]

      WU Di, SHEN Zhen, YOU Xiao-Zeng, et al. Chinese J. Inorg. Chem., 2007, 23(1):114
       

    31. [31]

      Wang P, Zakeeruddin S M, Comte P, et al. J. Phys. Chem. B, 2003, 107:14336-14341  doi: 10.1021/jp0365965

    32. [32]

      Cai N, Wang Y L, Xu M F, et al. Adv. Funct. Mater., 2013, 23:1846-1854  doi: 10.1002/adfm.201202562

    33. [33]

      Palomares E, Martínez-Díaz M V, Haque S A, et al. Chem. Commun., 2004(18):2112-2113  doi: 10.1039/B407860H

    34. [34]

      Kira A, Umeyama T, Matano Y, et al. J. Am. Chem. Soc., 2009, 131(9):3198-3200  doi: 10.1021/ja8096465

    35. [35]

      Leondiadis L, Momenteau M. J. Org. Chem., 1989, 54(26):6135-6138  doi: 10.1021/jo00287a034

    36. [36]

      Seo K D, Lee M J, Song H M, et al. Dyes Pigm., 2012, 94(1):143-149  doi: 10.1016/j.dyepig.2011.12.006

    37. [37]

      Mathew S, Yella A, Gao P, et al. Nat. Chem., 2014, 6(3):242247
       

    38. [38]

      Wang Q, Moser J E, Grätzel M. J. Phys. Chem. B, 2005, 109(31):14945-14953  doi: 10.1021/jp052768h

    39. [39]

      Barea E M, Gónzalez-Pedro V, Ripollés-Sanchis, et al. J. Phys. Chem. C, 2011, 115(21):10898-10902  doi: 10.1021/jp2018378

  • 加载中
    1. [1]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    2. [2]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Kun JIANGYutong XUEKelin LIUMiao WANGTongming SUNYanfeng TANG . CeVO4 hollow microspheres: Fabrication and adsorption performance for dyes. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2229-2236. doi: 10.11862/CJIC.20250223

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    7. [7]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    8. [8]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    9. [9]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    10. [10]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    11. [11]

      Qian ZHANGYuxuan ZHANGYongguang YANGRuijie BAIYuandong LILing LI . FeMoS4/carbon fiber cloth composites: Preparation and application in dye-sensitized solar cells. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1916-1926. doi: 10.11862/CJIC.20240442

    12. [12]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    16. [16]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    17. [17]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    18. [18]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    19. [19]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    20. [20]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

Metrics
  • PDF Downloads(3)
  • Abstract views(780)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return