Recent Advances in Microbial Biosynthesis of Inorganic Nanomaterials
- Corresponding author: YUAN Quan, yuanquan@whu.edu.cn
Citation: WANG Wen-Jie, CHEN Yu-Xia, LIANG Ling, ZENG Bo, TAN Jie, YUAN Quan. Recent Advances in Microbial Biosynthesis of Inorganic Nanomaterials[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(5): 777-794. doi: 10.11862/CJIC.2020.108
Guru P S, Dash S. Adv. Colloid Interface Sci., 2014, 209:49-67
doi: 10.1016/j.cis.2013.12.013
Palmer L C, Newcomb C J, Kaltz S R, et al. Chem. Rev., 2008, 108(11):4754-4783
doi: 10.1021/cr8004422
Yao S S, Jin B, Liu Z M, et al. Adv. Mater., 2017, 29(14):1605903
doi: 10.1002/adma.201605903
Mann S. Nature, 1993, 365(6446):499-505
doi: 10.1038/365499a0
Addadi L, Weiner S. Angew. Chem. Int. Ed., 1992, 31(2):153-169
doi: 10.1002/anie.199201531
Griebler C, Lueders T. Freshwater Biology, 2009, 54(4):649-677
doi: 10.1111/j.1365-2427.2008.02013.x
Trofimov A A, Pawlicki A A, Borodinov N, et al. npj Comput. Mater., 2019, 5(1):4
Kröger N, Deutzmann R, Sumper M. Science, 1999, 286(5442):1129-1132
doi: 10.1126/science.286.5442.1129
Oliver S, Kuperman A, Coombs N, et al. Nature, 1995, 378(6552):47-50
doi: 10.1038/378047a0
Faivre D, Schüler D. Chem. Rev., 2008, 108(11):4875-4898
doi: 10.1021/cr078258w
Schüler D, Frankel R B. Appl. Microbiol. Biotechnol., 1999, 52(4):464-473
doi: 10.1007/s002530051547
Mann H, Fyfe W S. Can. J. Earth Sci., 1989, 26(12):2731-2735
doi: 10.1139/e89-234
Krumov N, Perner-Nochta I, Oder S, et al. Chem. Eng. Technol., 2009, 32(7):1026-1035
doi: 10.1002/ceat.200900046
Schultze-Lam S, Fortin D, Davis B S, et al. Chem. Geol., 1996, 132(1):171-181
doi: 10.1016/S0009-2541(96)00053-8
Nancharaiah Y V, Lens P N L. Trends Biotechnol., 2015, 33(6):323-330
doi: 10.1016/j.tibtech.2015.03.004
Li J H, Bernard S, Benzerara K, et al. Earth Planet. Sci. Lett., 2014, 400:113-122
doi: 10.1016/j.epsl.2014.05.031
Rahn-Lee L, Komeili A. Front. Microbiol., 2013, 4:352
doi: 10.3389/fmicb.2013.00352
Ray P C. Chem. Rev., 2010, 110(9):5332-5365
doi: 10.1021/cr900335q
Colvin V L. Nat. Biotechnol., 2003, 21(10):1166-1170
doi: 10.1038/nbt875
Li Y, Zhang H. Nanomedicine, 2019, 14(11):1493-1512
doi: 10.2217/nnm-2018-0346
Matsunaga T, Okamura Y, Tanaka T. J. Mater. Chem., 2004, 14(14):2099-2105
doi: 10.1039/b404844j
Darabdhara G, Das M R, Singh S P, et al. Adv. Colloid Interface Sci., 2019, 271:101991
doi: 10.1016/j.cis.2019.101991
Gahlawat G, Choudhury A R. RSC Adv., 2019, 9(23):12944-12967
doi: 10.1039/C8RA10483B
Moghaddam A B, Namvar F, Moniri M, et al. Molecules, 2015, 20(9):16540-16565
doi: 10.3390/molecules200916540
Beveridge T J, Murray R G. J. Bacteriol., 1980, 141(2):876-887
doi: 10.1128/JB.141.2.876-887.1980
Klaus T, Joerger R, Olsson E, et al. Proc. Natl. Acad. Sci. USA, 1999, 96(24):13611-13614
doi: 10.1073/pnas.96.24.13611
Shedbalkar U, Singh R, Wadhwani S, et al. Adv. Colloid Interface Sci., 2014, 209:40-48
doi: 10.1016/j.cis.2013.12.011
Poulose S, Panda T, Nair P P, et al. J. Nanosci. Nanotechnol., 2014, 14(2):2038-2049
doi: 10.1166/jnn.2014.9019
Huang J L, Lin L Q, Sun D H, et al. Chem. Soc. Rev., 2015, 44(17):6330-6374
doi: 10.1039/C5CS00133A
Dahoumane S A, Mechouet M, Wijesekera K, et al. Green Chem., 2017, 19(3):552-587
doi: 10.1039/C6GC02346K
Zhou J, Yang Y, Zhang C Y. Chem. Rev., 2015, 115(21):11669-11717
doi: 10.1021/acs.chemrev.5b00049
XIONG Ling-Hong, CUI Ran, LIU Hui-Hui, et al. SCIENTIA SINICA Chimica, 2016, 46(2):163-172
Reith F, Etschmann B, Grosse C, et al. Proc. Natl. Acad. Sci. USA, 2009, 106(42):17757-17762
doi: 10.1073/pnas.0904583106
Hulkoti N I, Taranath T C. Colloids Surf. B, 2014, 121:474-483
doi: 10.1016/j.colsurfb.2014.05.027
Siddiqi K S, Husen A. Nanoscale Res. Lett., 2016, 11(1):98
doi: 10.1186/s11671-016-1311-2
He S Y, Guo Z R, Zhang Y, et al. Mater. Lett., 2007, 61(18):3984-3987
doi: 10.1016/j.matlet.2007.01.018
Anil Kumar S, Abyaneh M K, Gosavi S W, et al. Biotechnol. Lett., 2007, 29(3):439-445
doi: 10.1007/s10529-006-9256-7
Moteshafi H, Mousavi S M, Shojaosadati S A. J. Ind. Eng. Chem., 2012, 18(6):2046-2050
doi: 10.1016/j.jiec.2012.05.025
Singh R, Shedbalkar U U, Wadhwani S A, et al. Appl. Microbiol. Biotechnol., 2015, 99(11):4579-4593
doi: 10.1007/s00253-015-6622-1
Deplanche K, Caldelari I, Mikheenko I P, et al. Microbiology, 2010, 156(9):2630-2640
doi: 10.1099/mic.0.036681-0
Li Y M, Li Y M, Li Q, et al. J. Nanomater., 2017, 2017:9703614
Narayanan K B, Sakthivel N. Adv. Colloid Interface Sci., 2010, 156(1):1-13
doi: 10.1016/j.cis.2010.02.001
Park T J, Lee K G, Lee S Y. Appl. Microbiol. Biotechnol., 2016, 100(2):521-534
doi: 10.1007/s00253-015-6904-7
Das S K, Liang J N, Schmidt M, et al. ACS Nano, 2012, 6(7):6165-6173
doi: 10.1021/nn301502s
Benzerara K, Miot J, Morin G, et al. C. R. Geosci., 2011, 343(2):160-167
doi: 10.1016/j.crte.2010.09.002
Dhillon G S, Brar S K, Kaur S, et al. Crit. Rev. Biotechnol., 2012, 32(1):49-73
doi: 10.3109/07388551.2010.550568
Gade A K, Bonde P, Ingle A P, et al. J. Biobased Mater. Bioenergy, 2008, 2(3):243-247
doi: 10.1166/jbmb.2008.401
LIU Zi-Yan, ZHOU Hao, SHEN E, et al. Microbiology China, 2015, 42(8):1584-1592
doi: 10.13344/j.microbiol.china.140868
Lin I W S, Lok C N, Che C M. Chem. Sci., 2014, 5(8):3144-3150
doi: 10.1039/C4SC00138A
He W, Zhou W J, Wang Y J, et al. Mater. Sci. Eng. C, 2009, 29(4):1348-1350
Kitching M, Ramani M, Marsili E. Microb. Biotechnol., 2015, 8(6):904-917
doi: 10.1111/1751-7915.12151
Quester K, Avalos-Borja M, Vilchis-Nestor A R, et al. PLoS One, 2013, 8(10):e77486
doi: 10.1371/journal.pone.0077486
Tanzil A H, Sultana S T, Saunders S R, et al. Enzyme Microb. Technol., 2016, 95:4-12
doi: 10.1016/j.enzmictec.2016.07.015
Bansal V, Rautaray D, Bharde A, et al. J. Mater. Chem., 2005, 15(26):2583-2589
doi: 10.1039/b503008k
Bansal V, Rautaray D, Ahmad A, et al. J. Mater. Chem., 2004, 14(22):3303-3305
doi: 10.1039/b407904c
Lee S Y, Lim J S, Harris M T. Biotechnol. Bioeng., 2012, 109(1):16-30
doi: 10.1002/bit.23328
Mandal D, Bolander M E, Mukhopadhyay D, et al. Appl. Microbiol. Biotechnol., 2006, 69(5):485-492
doi: 10.1007/s00253-005-0179-3
Cui R, Liu H H, Xie H Y, et al. Adv. Funct. Mater., 2009, 19(15):2359-2364
doi: 10.1002/adfm.200801492
Labrenz M, Druschel G K, Thomsen-Ebert T, et al. Science, 2000, 290(5497):1744-1747
doi: 10.1126/science.290.5497.1744
Kashyap P L, Kumar S, Srivastava A K, et al. World J. Microbiol. Biotechnol., 2013, 29(2):191-207
doi: 10.1007/s11274-012-1171-6
Das S K, Das A R, Guha A K. Small, 2010, 6(9):1012-1021
doi: 10.1002/smll.200902011
Srikar S K, Giri D D, Pal D B, et al. Green Sustainable Chem., 2016, 6:34-56
doi: 10.4236/gsc.2016.61004
Liu B, Xie J, Lee J Y, et al. J. Phys. Chem. B, 2005, 109(32):15256-15263
doi: 10.1021/jp051449n
Sreedharan S M, Singh S P, Singh R. Indian J. Microbiol., 2019, 59(3):321-327
Saxena J, Sharma M, Gupta S, et al. World J. Pharm. Pharm. Sci., 2014, 3(9):1586-1613
Shenton W, Douglas T, Young M, et al. Adv. Mater., 1999, 11(3):253-256
doi: 10.1002/(SICI)1521-4095(199903)11:33.0.CO;2-J
Bao H F, Hao N, Yang Y X, et al. Nano Res., 2010, 3(7):481-489
doi: 10.1007/s12274-010-0008-6
Beveridge T J. Curr. Opin. Struct. Biol., 1994, 4(2):204-212
doi: 10.1016/S0959-440X(94)90309-3
Kang S H, Bozhilov K N, Myung N V, et al. Angew. Chem. Int. Ed., 2008, 47(28):5186-5189
doi: 10.1002/anie.200705806
Park T J, Lee S Y, Heo N S, et al. Angew. Chem. Int. Ed., 2010, 49(39):7019-7024
doi: 10.1002/anie.201001524
Chen Y L, Tuan H Y, Tien C W, et al. Biotechnol. Progr., 2009, 25(5):1260-1266
doi: 10.1002/btpr.199
Mohanpuria P, Rana N K, Yadav S K. J. Nanopart. Res., 2008, 10(3):507-517
doi: 10.1007/s11051-007-9275-x
Gupta S K, Shukla P. Crit. Rev. Biotechnol., 2017, 37(5):672-684
doi: 10.1080/07388551.2016.1214557
Asmathunisha N, Kathiresan K. Colloids Surf. B, 2013, 103:283-287
doi: 10.1016/j.colsurfb.2012.10.030
Slocik J M, Naik R R, Stone M O, et al. J. Mater. Chem., 2005, 15(7):749-753
doi: 10.1039/b413074j
Huang Y, Chiang C Y, Lee S K, et al. Nano Lett., 2005, 5(7):1429-1434
doi: 10.1021/nl050795d
Li X Q, Xu H Z, Chen Z S, et al. J. Nanomater., 2011, 2011:270974
doi: 10.1155/2011/270974
Gericke M, Pinches A. Hydrometallurgy, 2006, 83(1):132-140
doi: 10.1016/j.hydromet.2006.03.019
Sanghi R, Verma P. Bioresour. Technol., 2009, 100(1):501-504
doi: 10.1016/j.biortech.2008.05.048
Shivaji S, Madhu S, Singh S. Process Biochem., 2011, 46(9):1800-1807
doi: 10.1016/j.procbio.2011.06.008
Kathiresan K, Manivannan S, Nabeel M A, et al. Colloids Surf. B, 2009, 71(1):133-137
doi: 10.1016/j.colsurfb.2009.01.016
Brown S, Sarikaya M, Johnson E. J. Mol. Biol., 2000, 299(3):725-735
doi: 10.1006/jmbi.2000.3682
Yong P, Rowson N A, Farr J P G, et al. J. Chem. Technol. Biotechnol., 2002, 77(5):593-601
doi: 10.1002/jctb.606
Ramanathan R, O'Mullane A P, Parikh R Y, et al. Langmuir, 2011, 27(2):714-719
Mohammed Fayaz A, Balaji K, Kalaichelvan P T, et al. Colloids Surf. B, 2009, 74(1):123-126
Zhang X R, He X X, Wang K M, et al. J. Nanosci. Nanotechnol., 2009, 9(10):5738-5744
doi: 10.1166/jnn.2009.1287
Xie J P, Lee J Y, Wang D I C, et al. J. Phys. Chem. C, 2007, 111(45):16858-16865
doi: 10.1021/jp0752668
Riddin T, Gericke M, Whiteley C G. Enzyme Microb. Technol., 2010, 46(6):501-505
doi: 10.1016/j.enzmictec.2010.02.006
He S Y, Guo Z R, Zhang Y, et al. Biotechnol. Progr., 2008, 24(2):476-480
doi: 10.1021/bp0703174
Zhou W J, Xiong T L, Shi C H, et al. Angew. Chem. Int. Ed., 2016, 55(29):8416-8420
doi: 10.1002/anie.201602627
Das S K, Das A R, Guha A K. Langmuir, 2009, 25(14):8192-8199
doi: 10.1021/la900585p
Lengke M F, Fleet M E, Southam G. Langmuir, 2006, 22(6):2780-2787
doi: 10.1021/la052652c
Durán N, Marcato P D, De Souza G I H, et al. J. Biomed. Nanotechnol., 2007, 3(2):203-208
Das S K, Khan M M R, Guha A K, et al. Bioresour. Technol., 2012, 124:495-499
doi: 10.1016/j.biortech.2012.08.071
Vigneshwaran N, Kathe A A, Varadarajan P V, et al. Colloids Surf. B, 2006, 53(1):55-59
doi: 10.1016/j.colsurfb.2006.07.014
Kimber R L, Lewis E A, Parmeggiani F, et al. Small, 2018, 14(10):1703145
doi: 10.1002/smll.201703145
Sinha A, Khare S K. Bioresour. Technol., 2011, 102(5):4281-4284
doi: 10.1016/j.biortech.2010.12.040
Xiong L, Chen J J, Huang Y X, et al. Nano Energy, 2015, 12:33-42
doi: 10.1016/j.nanoen.2014.11.065
Liu J W, Zheng Y, Hong Z L, et al. Sci. Adv., 2016, 2(9):e1600858
doi: 10.1126/sciadv.1600858
Amemiya Y, Arakaki A, Staniland S S, et al. Biomaterials, 2007, 28(35):5381-5389
doi: 10.1016/j.biomaterials.2007.07.051
Tuo Y, Liu G F, Dong B, et al. Sci. Rep., 2015, 5:13515
doi: 10.1038/srep13515
Bharde A A, Parikh R Y, Baidakova M, et al. Langmuir, 2008, 24(11):5787-5794
doi: 10.1021/la704019p
Raliya R, Biswas P, Tarafdar J C. Biotechnol. Rep., 2015, 5:22-26
doi: 10.1016/j.btre.2014.10.009
Tripathi R M, Bhadwal A S, Gupta R K, et al. J. Photochem. Photobiol. B, 2014, 141:288-295
doi: 10.1016/j.jphotobiol.2014.10.001
Jha A K, Prasad K, Prasad K. Biotechnol. J., 2009, 4(11):1582-1585
doi: 10.1002/biot.200900144
Sakimoto K K, Wong A B, Yang P D. Science, 2016, 351(6268):74-77
doi: 10.1126/science.aad3317
Kowshik M, Deshmukh N, Vogel W, et al. Biotechnol. Bioeng., 2002, 78(5):583-588
doi: 10.1002/bit.10233
Ma X M, Chen H F, Yang L, et al. Angew. Chem. Int. Ed., 2011, 50(32):7414-7417
doi: 10.1002/anie.201100126
Sarkar J, Dey P, Saha S, et al. Micro Nano Lett., 2011, 6(8):599-602
doi: 10.1049/mnl.2011.0227
Guo P P, Xiao F, Liu Q, et al. Sci. Rep., 2013, 3:3499
doi: 10.1038/srep03499
Mukherjee P, Ahmad A, Mandal D, et al. Angew. Chem. Int. Ed., 2001, 40(19):3585-3588
doi: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K
Mukherjee P, Ahmad A, Mandal D, et al. Nano Lett., 2001, 1(10):515-519
doi: 10.1021/nl0155274
Sundaramoorthi C, Rajasekaran A, Kalaiselvan V, et al. Int. J. Pharm. Tech. Res., 2009, 1(4):1523-1529
Joerger R, Klaus T, Granqvist C G. Adv. Mater., 2000, 12(6):407-409
doi: 10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O
Song X J, Shi X Y. Environ. Sci. Pollut. Res., 2017, 24(3):3038-3044
doi: 10.1007/s11356-016-8076-0
Sen I K, Maity K, Islam S S. Carbohydr. Polym., 2013, 91(2):518-528
doi: 10.1016/j.carbpol.2012.08.058
Lloyd J R, Yong P, Macaskie L E. Appl. Environ. Microbiol., 1998, 64(11):4607-4609
doi: 10.1128/AEM.64.11.4607-4609.1998
Lengke M F, Fleet M E. Southam G. Langmuir, 2006, 22(17):7318-7323
doi: 10.1021/la060873s
Søbjerg L S, Lindhardt A T, Skrydstrup T, et al. Colloids Surf. B, 2011, 85(2):373-378
doi: 10.1016/j.colsurfb.2011.03.014
Puja P, Kumar P. Spectrochim. Acta Part A, 2019, 211:94-99
doi: 10.1016/j.saa.2018.11.047
Xiong L, Zhang X, Huang Y X, et al. ACS Appl. Nano Mater., 2018, 1(4):1467-1475
doi: 10.1021/acsanm.7b00322
Song X J, Shi X Y, Yang M. IET Nanobiotechnol., 2017, 12(4):441-445
Prasad K, Jha A K, Kulkarni A R. Nanoscale Res. Lett., 2007, 2(5):248-250
doi: 10.1007/s11671-007-9060-x
Mullen M D, Wolf D C, Ferris F G, et al. Appl. Environ. Microbiol., 1989, 55(12):3143-3149
doi: 10.1128/AEM.55.12.3143-3149.1989
Godipurge S S, Yallappa S, Biradar N J, et al. Enzyme Microb. Technol., 2016, 95:174-184
doi: 10.1016/j.enzmictec.2016.08.006
Nair B, Pradeep T. Cryst. Growth Des., 2002, 2(4):293-298
Senapati S, Ahmad A, Khan M I, et al. Small, 2005, 1(5):517-520
doi: 10.1002/smll.200400053
Zheng D Y, Hu C G, Gan T, et al. Sens. Actuators B, 2010, 148(1):247-252
doi: 10.1016/j.snb.2010.04.031
Han R S, Song X, Wang Q H, et al. J. Chem. Technol. Biotechnol., 2019, 94(10):3375-3383
doi: 10.1002/jctb.6150
Blakemore R. Science, 1975, 190(4212):377-379
doi: 10.1126/science.170679
Kumar U, Shete A, Harle A S, et al. Chem. Mater., 2008, 20(4):1484-1491
doi: 10.1021/cm702727x
Bharde A, Rautaray D, Bansal V, et al. Small, 2006, 2(1):135-141
doi: 10.1002/smll.200500180
Byrne J M, Coker V S, Cespedes E, et al. Adv. Funct. Mater., 2014, 24(17):2518-2529
doi: 10.1002/adfm.201303230
Wu L H, Mendoza-Garcia A, Li Q, et al. Chem. Rev., 2016, 116(18):10473-10512
doi: 10.1021/acs.chemrev.5b00687
Coker V S, Bennett J A, Telling N D, et al. ACS Nano, 2010, 4(5):2577-2584
doi: 10.1021/nn9017944
Watson J H P, Ellwood D C, Soper A K, et al. J. Magn. Magn. Mater., 1999, 203(1):69-72
doi: 10.1016/s0304-8853(99)00191-2
Watson J H P, Ellwood D C. Miner. Eng., 1994, 7(8):1017-1028
doi: 10.1016/0892-6875(94)90030-2
Lisy M R, Hartung A, Lang C, et al. Invest. Radiol., 2007, 42(4):235-241
doi: 10.1097/01.rli.0000255832.44443.e7
Suzuki Y, Kelly S D, Kemner K M, et al. Nature, 2002, 419(6903):134
doi: 10.1038/419134a
Karunagaran V, Rajendran K, Sen S. Int. J. Nanosci., 2017, 16(05n06):1750018
doi: 10.1142/S0219581X17500181
Atla S B, Chen Y J, Chiu H W, et al. Mater. Lett., 2016, 167:238-241
doi: 10.1016/j.matlet.2015.12.123
Uddin I, Adyanthaya S, Syed A, et al. J. Nanosci. Nanotechnol., 2008, 8(8):3909-3913
doi: 10.1166/jnn.2008.179
Cuevas R, Durán N, Diez M, et al. J. Nanomater., 2015, 16(1):57
doi: 10.1155/2015/789089
Dameron C T, Reese R N, Mehra R K, et al. Nature, 1989, 338(6216):596-597
doi: 10.1038/338596a0
Cunningham D P, Lundie L L. Appl. Environ. Microbiol., 1993, 59(1):7-14
doi: 10.1016/S0065-2164(08)70598-7
Kowshik M, Vogel W, Urban J, et al. Adv. Mater., 2002, 14(11):815-818
doi: 10.1002/1521-4095(20020605)14:11<815::AID-ADMA815>3.0.CO;2-K
Mala J G S, Rose C. J. Biotechnol., 2014, 170:73-78
doi: 10.1016/j.jbiotec.2013.11.017
Cuéllar-Cruz M, Lucio-Hernández D, Martínez-ángeles I, et al. Microb. Biotechnol., 2017, 10(2):405-424
Bai H J, Zhang Z M. Mater. Lett., 2009, 63(9):764-766
doi: 10.1016/j.matlet.2008.12.050
Debabov V G, Voeikova T A, Shebanova A S, et al. Nanotechnol. Russ., 2013, 8(3):269-276
doi: 10.1134/S1995078013020043
Sathyavathi S, Manjula A, Rajendhran J, et al. Indian J. Exp. Biol., 2013, 51:973-978
doi: 10.1038/gt.2013.37
Yue L, Wu Y, Liu X, et al. Biotechnol. Progr., 2014, 30(4):960-966
Hosseini M R, Schaffie M, Pazouki M, et al. Mater. Sci. Semicond. Process., 2013, 16(2):250-255
doi: 10.1016/j.mssp.2012.11.002
Su Y L, Du Q Q, Qu X C, et al. RSC Adv., 2016, 6(34):28187-28193
doi: 10.1039/C5RA26714E
Wang L Q, Pang Q, Song Q Q, et al. Fuel, 2015, 140:267-274
doi: 10.1016/j.fuel.2014.09.107
Wang B, Liu P, Jiang W G, et al. Angew. Chem. Int. Ed., 2008, 47(19):3560-3564
doi: 10.1002/anie.200704718
Rautaray D, Sanyal A, Adyanthaya S D, et al. Langmuir, 2004, 20(16):6827-6833
doi: 10.1021/la049244d
Bansal V, Poddar P, Ahmad A, et al. J. Am. Chem. Soc., 2006, 128(36):11958-11963
doi: 10.1021/ja063011m
Woolfolk C A, Whiteley H R. J. Bacteriol., 1962, 84(4):647-658
doi: 10.1128/JB.84.4.647-658.1962
Baesman S M, Bullen T D, Dewald J, et al. Appl. Environ. Microbiol., 2007, 73(7):2135-2143
doi: 10.1128/AEM.02558-06
Wang T T, Yang L B, Zhang B C, et al. Colloids Surf. B, 2010, 80(1):94-102
Lee J H, Kim M G, Yoo B, et al. Proc. Natl. Acad. Sci. USA, 2007, 104(51):20410-20415
doi: 10.1073/pnas.0707595104
Huang J H. Water Air Soil Pollut., 2014, 225(2):1848
doi: 10.1007/s11270-013-1848-y
Salas E C, Sun Z Z, Lüttge A, et al. ACS Nano, 2010, 4(8):4852-4856
doi: 10.1021/nn101081t
Wang G M, Qian F, Saltikov C W, et al. Nano Res., 2011, 4(6):563-570
doi: 10.1007/s12274-011-0112-2
Wu Z Y, Liang H W, Chen L F, et al. Acc. Chem. Res., 2016, 49(1):96-105
doi: 10.1021/acs.accounts.5b00380
Vasylevskyi S I, Kracht S, Corcosa P, et al. Angew. Chem. Int. Ed., 2017, 56(21):5926-5930
doi: 10.1002/anie.201702621
Moon J W, Ivanov I N, Joshi P C, et al. Acta Biomater., 2014, 10(10):4474-4483
doi: 10.1016/j.actbio.2014.06.005
Moon J W, Phelps T J, Fitzgerald Jr C L, et al. Appl. Microbiol. Biotechnol., 2016, 100(18):7921-7931
doi: 10.1007/s00253-016-7556-y
Moon J W, Rawn C J, Rondinone A J, et al. J. Ind. Microbiol. Biotechnol., 2010, 37(10):1023-1031
doi: 10.1007/s10295-010-0749-y
Bansal V, Bharde A, Ramanathan R, et al. Adv. Colloid Interface Sci., 2012, 179:150-168
doi: 10.1016/j.cis.2012.06.013
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
Biosynthesis of inorganic nanomaterials mediated by bioreduction can be classified into extracellular synthesis and intracellular synthesis; Metal ions are reduced followed by nucleation and growth of nanoparticles; Dispersed nanoparticles are obtained after stabilization by biomolecules
MOX: oxidized Au3+ ion; MRED: reduced metallic Au; Red: reduced protein or enzyme; Ox: oxidized protein or enzyme
AuNPs were synthesized on the cell surface and in the cell, then Au/microbe composite was further calcined to prepare Au@NC as an electrocatalyst for hydrogen evolution reaction andn oxygen evolution reaction
Cys: cysteine
GSH: glutathione; Diameters(D) of CdSe QDs increased gradually after incubation with Cd2+ for a period of time; In situ laser confocal scanning microscopy photographs and corresponding fluorescence spectra show that yeasts emitted green fluorescence, yellow fluorescence and red fluorescence after incubation with Cd2+ for 12, 24 and 40 h respectively