Citation: GE Chao, Lü Meng-Di, ZHANG Zi-You, CHEN Jun, WANG Meng-Meng, XUE Xu-Ling, QIAN Yong, LIU Hong-Ke. Trends of Platinum and Metal-Arene Anticancer Drugs Based on Natural Products[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(4): 597-606. doi: 10.11862/CJIC.2020.086 shu

Trends of Platinum and Metal-Arene Anticancer Drugs Based on Natural Products

Figures(15)

  • More than 50% of modern drugs used clinically come from natural products, which can prevent tumor growth and progression by influencing multiple biological pathways such as blocking cell cycle progression, inhibiting cancer cell survival signaling pathway and regulating immune cells. They also show low toxicity to normal tissues. Metal antitumor drugs represented by cisplatin have been widely used in clinical practice. However, they also have severe drug resistance and side effects, such as nephrotoxicity and neurotoxicity. Therefore, modified platinum drugs with natural products are beneficial for overcoming their deficiencies. On the other hand, the emergence of arene-metal complexes provides more possibilities for the development of high-efficiency and low-toxicity anticancer drugs due to their good water solubility and low toxicity towards normal organisms. Combining the respective advantages of natural products and metals opened up new opportunities for the development of anti-cancer drugs, and the development of metal complexes based on natural products as anticancer agents has become a research hotspot. In this paper, the research and mechanism of platinum and arene-metal complexes based on natural products are reviewed comprehensively, and the future development in this field has prospected.
  • 加载中
    1. [1]

      Galanski M.. Recent Pat. Anticancer Drug Discov., 2006, 1(2):285-295  doi: 10.2174/157489206777442287

    2. [2]

      Reed E.. Cancer Treat. Rev., 1998, 24(5):331-344  doi: 10.1016/S0305-7372(98)90056-1

    3. [3]

      Xue X L, Zhu C C, Guo Z J, et al.. Inorg. Chem., 2017, 56(7):3754-3762  doi: 10.1021/acs.inorgchem.6b02148

    4. [4]

      Xue X L, Qian C G, Guo Z J, et al.. Angew. Chem. Int. Ed., 2019, 58:12661-12666  doi: 10.1002/anie.201906203

    5. [5]

      Hall M D, Mellor H R, Hambley T W, et al.. J. Med. Chem., 2007, 50(15):3403-3411  doi: 10.1021/jm070280u

    6. [6]

      Rijt S V, Sadler P J.. Drug Discovery Today, 2009, 14:1089-1097  doi: 10.1016/j.drudis.2009.09.003

    7. [7]

      Johnstone T C, Suntharalingam K, Lippard S J.. Chem. Rev., 2016, 116(5):3436-3486  doi: 10.1021/acs.chemrev.5b00597

    8. [8]

      Wang X Y, Wang X H, Guo Z J.. Acc. Chem. Res., 2015, 48(9):2622-2631  doi: 10.1021/acs.accounts.5b00203

    9. [9]

      Wang X Y, Guo Z J.. Chem. Soc. Rev., 2013, 42(1):202-224  doi: 10.1039/C2CS35259A

    10. [10]

      Huang X C, Huang R Z, Wang Z M, et al.. Bioconjugate Chem., 2016, 27:2132-2148  doi: 10.1021/acs.bioconjchem.6b00353

    11. [11]

      Parveen S, Arjmand F, Tabassum S.. Eur. J. Med. Chem., 2019, 175:269-286  doi: 10.1016/j.ejmech.2019.04.062

    12. [12]

      Abid M, Shamsi F, Azam A.. Mini-Rev. Med. Chem., 2016, 16(10):772-786  doi: 10.2174/1389557515666151001142012

    13. [13]

      Dyson P J, Sava G.. Dalton Trans., 2006, 16:1929-1933
       

    14. [14]

      Adam A M A.. J. Mol. Struct., 2019, 1195:43-57  doi: 10.1016/j.molstruc.2019.05.097

    15. [15]

      Liu H K, Sadler P J.. Acc. Chem. Res., 2011, 44:349-359  doi: 10.1021/ar100140e

    16. [16]

      Li J J, Tian Z Z, Liu Z, et al.. Appl. Organometal. Chem., 2019, 33(4):4685-4695  doi: 10.1002/aoc.4685

    17. [17]

      Kelman A D, Clarke M J, Peresie H J, et al.. J. Clin. Hematol. Oncol., 1977, 7:274-288
       

    18. [18]

      Alessio E, Mestroni G, Sava G, et al.. Metal Ions in Biological Systems. Florida:CRC Press, 2004:323-351
       

    19. [19]

      Mestroni G, Pacor S, Zorzet S, et al.. Chemical, Biological and Antitumor Properties of Ruthenium(Ⅱ) Complexes with Dimethyl Sulfoxide. Berlin, New York:Springer-Verlag, 1989:71-87
       

    20. [20]

      Alessio E, Sava G, Beijnen J H, et al.. Invest. New Drugs, 2015, 33:201-214  doi: 10.1007/s10637-014-0179-1

    21. [21]

      Alessio E, Mestroni G, Bergamo A, et al.. Curr. Top. Med. Chem., 2004, 4:1525-1535  doi: 10.2174/1568026043387421

    22. [22]

      Alessio E, Messori L.. Met. Ions Life Sci., 2018, 18:141-170

    23. [23]

      Clarke M J, Bitler S, Kelman A D, et al.. J. Inorg. Biochem., 1980, 12:79-87  doi: 10.1016/S0162-0134(00)80045-8

    24. [24]

      Antonarakis E S, Emadi A.. Cancer Chemother. Pharmacol., 2010, 66(1):1-9  doi: 10.1007/s00280-010-1293-1

    25. [25]

      Reisner E, Arion V B, Pombeiro A J L, et al.. Inorg. Chem., 2004, 43:7083-7093  doi: 10.1021/ic049479c

    26. [26]

      Jakupec M A, Hartinger C G, Keppler B K, et al.. J. Med. Chem., 2005, 48:2831-2837  doi: 10.1021/jm0490742

    27. [27]

      Habtemariam A, Melchart M, Sadler P J, et al.. J. Med. Chem., 2006, 49:6858-6868  doi: 10.1021/jm060596m

    28. [28]

      Chen H, Parkinson J A, Sadler P J, et al.. J. Am. Chem. Soc., 2002, 124(12):3064-3082  doi: 10.1021/ja017482e

    29. [29]

      Coverdale J P C, Bridgewater H E, Sadler P J, et al.. J. Med. Chem., 2018, 61(20):9246-9255  doi: 10.1021/acs.jmedchem.8b00958

    30. [30]

      Liu H K, Habtemariam A, Sadler P J, et al.. Dalton Trans., 2016, 45:18676-18688  doi: 10.1039/C6DT03356C

    31. [31]

      Yan Y K, Habtemariam A, Sadler P J, et al.. Chem. Commun., 2005, 38:4764-4776

    32. [32]

      Wang H Y, Sadler P J, Liu H K, et al.. Eur. J. Inorg. Chem., 2017, 12:1792-1799
       

    33. [33]

      Banerjee S, Soldevila-Barreda J J, Sadler P J, et al.. Chem. Sci., 2018, 9(12):3177-3185  doi: 10.1039/C7SC05058E

    34. [34]

      Hartinger C G, Dyson P J.. Chem. Soc. Rev., 2009, 38:391-401  doi: 10.1039/B707077M

    35. [35]

      Aird R E, Cummings J, Sadler P J, et al.. Br. J. Cancer, 2002, 86(10):1652-1657  doi: 10.1038/sj.bjc.6600290

    36. [36]

      Liu H K, Parkinson J A, Sadler P J, et al.. Chem. Sci., 2010, 1:258-270  doi: 10.1039/c0sc00175a

    37. [37]

      Liu H K, Bella J, P.. J. Sadler, et al. Angew. Chem. Int. Ed., 2006, 45:8153-8156  doi: 10.1002/anie.200602873

    38. [38]

      Liu H K, Wang F Y, Sadler P J, et al.. Chem. Eur. J., 2006, 12:6151-6165  doi: 10.1002/chem.200600110

    39. [39]

      Wootton C A, Liu H K, Sadler P J, et al.. Dalton Trans., 2015, 44:3624-3632  doi: 10.1039/C4DT03819C

    40. [40]

      Li J, Sadler P J, Liu H K, et al.. Dalton Trans., 2017, 46:16205-16215  doi: 10.1039/C7DT03374E

    41. [41]

      Wu Q, Mao Z W, Liu H K, et al.. J. Inorg. Biochem., 2018, 189:30-39  doi: 10.1016/j.jinorgbio.2018.08.013

    42. [42]

      HAO Yuan-Yuan, GE Chao, LIU Hong-Ke, et al.. Chem. J. Chinese Universities, 2018, 39(4):614-622

    43. [43]

      GE Chao, QIAN Yong, LIU Hong-Ke, et al.. Chinese J. Inorg. Chem., 2018, 34(6):1079-1085
       

    44. [44]

      Cragg G M, Grothaus P G, Newman D J, et al.. Chem. Rev., 2009, 109:3012-3043  doi: 10.1021/cr900019j

    45. [45]

      Robinson S L, Christensonab J K, Wackett L P.. Nat. Prod. Rep., 2019, 36:458-475  doi: 10.1039/C8NP00052B

    46. [46]

      Lefranc F, Koutsaviti A, Kornienko A, et al.. Nat. Prod. Rep., 2019, 36:810-841  doi: 10.1039/C8NP00057C

    47. [47]

      Gao Z, Huang K, Yang X, et al.. Biochim. Biophys. Acta, 1999, 1472:643-650  doi: 10.1016/S0304-4165(99)00152-X

    48. [48]

      Liu Z L, Tanaka S, Horigome H, et al.. Biol. Pharm. Bull., 2002, 25:37-41  doi: 10.1248/bpb.25.37

    49. [49]

      Qin X D, Xu G, Gou S H, et al.. Biol. Med. Chem., 2017, 25:2507-2517  doi: 10.1016/j.bmc.2017.03.007

    50. [50]

      Middleton E, Kandaswami C, Theoharides T C.. Pharmacol. Rev., 2000, 52:673-751
       

    51. [51]

      Kurzwernhart A, Kandioller W, Hartinger C G, et al.. Chem. Commun., 2012, 48:4839-4841  doi: 10.1039/c2cc31040f

    52. [52]

      Kurzwernhart A, Kandioller W, Hartinger C G.. J. Med. Chem., 2012, 55:10512-10522  doi: 10.1021/jm301376a

    53. [53]

      Kurzwernhart A, Keppler B K, Hartinger C G, et al.. Eur. J. Inorg. Chem., 2016, 2:240-246
       

    54. [54]

      Aggarwal B B, Kumar A, Bharti A C.. Anticancer Res., 2003, 23:363-398
       

    55. [55]

      Zhang Y N, Fu M F, Zhai G X, et al.. Future Med. Chem., 2019, 11(9):1035-1056  doi: 10.4155/fmc-2018-0190

    56. [56]

      Valentini A, Conforti F, Crispini A, et al.. J. Med. Chem., 2009, 52:484-491  doi: 10.1021/jm801276a

    57. [57]

      Anand P, Kunnumakkara A B, Newman R A, et al.. Mol. Pharm., 2007, 4(6):807-818  doi: 10.1021/mp700113r

    58. [58]

      Kunnumakkara A B, Diagaradjane P, Guha S, et al.. Clin. Cancer Res., 2008, 14(7):2128-2136  doi: 10.1158/1078-0432.CCR-07-4722

    59. [59]

      Odot J, Albert P, Carlier A, et al.. Int. J. Cancer, 2004, 111(3):381-387

    60. [60]

      Cao J, Liu Y, Jia L, et al.. Free Radical Biol. Med., 2007, 43(6):968-975  doi: 10.1016/j.freeradbiomed.2007.06.006

    61. [61]

      Kumar A, Dhawan S, Hardegen N J, et al.. Biochem. Pharmacol., 1998, 55:775-783  doi: 10.1016/S0006-2952(97)00557-1

    62. [62]

      Singh S, Aggarwal B B.. J. Biol. Chem., 1995, 270(42):24995-25000  doi: 10.1074/jbc.270.42.24995

    63. [63]

      Schwertheim S, Wein F, Lennartz K, et al.. J. Cancer Res. Clin. Oncol., 2017, 143(7):1143-1154  doi: 10.1007/s00432-017-2380-z

    64. [64]

      Zhang H H, Zhang Y, Cheng Y N, et al.. Mol. Carcinog., 2018, 57(1):44-56

    65. [65]

      Gururaj A E, Belakavadi M, Venkatesh D A, et al.. Biochem. Biophys. Res. Commun., 2002, 297(4):934-942  doi: 10.1016/S0006-291X(02)02306-9

    66. [66]

      Mitra K, Gautam S, Chakravarty A R, et al.. Angew. Chem. Int. Ed., 2015, 54:13989-13993  doi: 10.1002/anie.201507281

    67. [67]

      Censi V, Caballero A B, Gamez P, et al.. J. Inorg. Biochem., 2019, 198:110749-110761  doi: 10.1016/j.jinorgbio.2019.110749

    68. [68]

      Bonfili L, Pettinari R, Cuccioloni M, et al.. ChemMedChem, 2012, 7:2010-2020  doi: 10.1002/cmdc.201200341

    69. [69]

      Caruso F, Rossi M, Pettinari C.. J. Med. Chem., 2012, 55:1072-1081  doi: 10.1021/jm200912j

    70. [70]

      Pettinari R, Marchetti F, Dyson P J, et al.. Organometallics, 2014, 33:3709-3715  doi: 10.1021/om500317b

    71. [71]

      (a) Pettinari R, Marchetti F, Dyson P J, et al.. Dalton Trans., 2015, 44: 20523-20531 (b)Pettinari R, Marchetti F, Dyson P J, et al.. Inorg. Chem. Front., 2019, 6: 2448-2457

    72. [72]

      Kandioller W, Hartinger C G, Keppler B K, et al.. Organometallics, 2009, 28:4249-4251  doi: 10.1021/om900483t

    73. [73]

      Hironishi M, Kordek R, Yanagihara R, et al.. Neurodegenera-tion, 1996, 5:325-329  doi: 10.1006/neur.1996.0044

    74. [74]

      Verma S, Cam M C, McNeill J H.. J. Am. Coll. Nutr., 1998, 17:11-18  doi: 10.1080/07315724.1998.10718730

    75. [75]

      Melchior M, Rettig S J, Liboiron B D, et al.. Inorg. Chem., 2001, 40:4686-4690  doi: 10.1021/ic000984t

    76. [76]

      Carland M, Tan K J, Denny W A, et al.. J. Inorg. Biochem., 2005, 99:1738-1743  doi: 10.1016/j.jinorgbio.2005.06.003

    77. [77]

      Peacock A F A, Melchart M, Sadler P J, et al.. Chem. Eur. J., 2007, 13:2601-2613  doi: 10.1002/chem.200601152

    78. [78]

      Kandioller W F, Hartinger C G, Dyson P J, et al.. J. Organomet. Chem., 2009, 694:922-929  doi: 10.1016/j.jorganchem.2008.10.016

    79. [79]

      Cao R H, Peng W L, Wang Z H, et al.. Curr. Med. Chem., 2007, 14:479-500  doi: 10.2174/092986707779940998

    80. [80]

      Xiao S L, Lin W, Wang C, et al.. Bioorg. Med. Chem. Lett., 2001, 11:437-441  doi: 10.1016/S0960-894X(00)00679-X

    81. [81]

      Funayama Y, Nishio K, Wakabayashi K, et al.. Mutat. Res., 1996, 349:183-191  doi: 10.1016/0027-5107(95)00176-X

    82. [82]

      Li Y, Liang F S, Jiang W, et al.. Cancer Biol. Ther., 2007, 6:1193-1199
       

    83. [83]

      Castro A C, Dang L C, Soucy F, et al.. Bioorg. Med. Chem. Lett., 2003, 13:2419-2422  doi: 10.1016/S0960-894X(03)00408-6

    84. [84]

      Cao R, Chen Q, Hou X, et al.. Bioorg. Med. Chem., 2004, 12:4613-4623  doi: 10.1016/j.bmc.2004.06.038

    85. [85]

      He L, Liao S Y, Mao Z W, et al.. Chem. Eur. J., 2013, 19:12152-12160  doi: 10.1002/chem.201301389

    86. [86]

      Dzubak P, Hajduch M, Vydra D, et al.. Nat. Prod. Rep., 2006, 33:394-411
       

    87. [87]

      Park H Y, Park S H, Yoon H K, et al.. Arch. Pham. Res., 2004, 27:57-60  doi: 10.1007/BF02980047

    88. [88]

      You R, Long W, Lai Z, et al.. J. Med. Chem., 2013, 56:1984-1995  doi: 10.1021/jm301652t

    89. [89]

      Kalani K, Kushwaha V, Verma R, et al.. Bioorg. Med. Chem. Lett., 2013, 33:2566-2570

    90. [90]

      Kuo R Y, Qian K, Lee H K, et al.. Nat. Prod. Rep., 2009, 26:1321-1344  doi: 10.1039/b810774m

    91. [91]

      Lin K W, Huang A M, Hour T C, et al.. Bioorg. Med. Chem., 2011, 19:4274-4285  doi: 10.1016/j.bmc.2011.05.054

    92. [92]

      Mahmoud A M, Hussein O E, Hozayen W G, et al.. Chem. Biol. Interact., 2017, 270:59-72  doi: 10.1016/j.cbi.2017.04.009

    93. [93]

      Liu Y, Qian K, Wang C Y, et al.. Bioorg. Med. Chem. Lett., 2012, 22:7530-7533  doi: 10.1016/j.bmcl.2012.10.041

    94. [94]

      Song J, Ko H, Sohn E J, et al.. Bioorg. Med. Chem. Lett., 2014, 24:1188-1191  doi: 10.1016/j.bmcl.2013.12.111

    95. [95]

      Vicker N, Su X, Lawrence H, et al.. Bioorg. Med. Chem. Lett., 2004, 14:3263-3267
       

    96. [96]

      Su X, Lawrence H, Ganeshapillai D, et al.. Bioorg. Med. Chem., 2004, 12:4439-4457  doi: 10.1016/j.bmc.2004.06.008

    97. [97]

      Kong Y Q, Chen F, Liu H K, et al.. J. Inorg. Biochem., 2018, 182:194-199  doi: 10.1016/j.jinorgbio.2018.02.004

    98. [98]

      Kapadia N S, Isarani S A, Shah M B.. Pharm. Biol., 2005, 43:551-553  doi: 10.1080/13880200500220888

    99. [99]

      Pile J E, Navalta J W, Davis C D, et al.. J. Nat. Prod., 2013, 76:1001-1006  doi: 10.1021/np3008792

    100. [100]

      Subramaniya B R, Srinivasan G, Sadullah S S M, et al.. PloS One, 2011, 6:1-11
       

    101. [101]

      Padhye S, Dandawate P, Yusufi M, et al.. Med. Res. Rev., 2010, 32:1131-1158
       

    102. [102]

      Sreelatha T, Hymavathi A, Babu K S, et al.. J. Agric. Food Chem., 2009, 57:6090-6094  doi: 10.1021/jf901760h

    103. [103]

      Chen Z F, Tan M X, Liu L M, et al.. Dalton Trans., 2009, 48:10824-10833

    104. [104]

      Likhitwitayawuid K, Kaewamatawong R, Ruangrungsi N, et al.. Planta Med., 1998, 64:237-241  doi: 10.1055/s-2006-957417

    105. [105]

      Prasad K R, Babu K S, Rao R R, et al.. Med. Chem. Res., 2012, 21:578-583  doi: 10.1007/s00044-011-9559-7

    106. [106]

      Mahal K, Schobert R, Biersack B, et al.. J. Inorg. Biochem., 2014, 138:64-72  doi: 10.1016/j.jinorgbio.2014.04.020

  • 加载中
    1. [1]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    2. [2]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    8. [8]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    12. [12]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    13. [13]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    14. [14]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    15. [15]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    16. [16]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(7)
  • Abstract views(458)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return