Citation: ZHOU Shuang, DONG Yong-Ming, JIANG Heng, LI Fei, GONG Hong. β-Hydroxyethylation of Thiols Catalyzed by Alkali Metal Inorganic Acid Salts[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(4): 636-642. doi: 10.11862/CJIC.2020.080 shu

β-Hydroxyethylation of Thiols Catalyzed by Alkali Metal Inorganic Acid Salts

  • Corresponding author: JIANG Heng, hjiang78@hotmail.com
  • Received Date: 10 July 2019
    Revised Date: 22 December 2019

Figures(4)

  • For the β-hydroxyethylation of sulfur atoms in thiols, there should be a strong interaction between the -SH group and the methylene carbon of ethylene carbonate (EC). However, the nucleophilicity of -SH group is insufficient to interact with the methylene carbon of EC. Therefore, a catalyst should be required to activate -SH group. Under the conditions of atmospheric pressure, solvent-free and 120℃, 14 kinds of alkali metal mineral acid salts (MA, M=Li+, Na+ and K+) were investigated for the S-hydroxyethylation of n-octyl mercaptan with EC. When A- of MA are the same, the ionic radius and polarizability of Li+, Na+ and K+ increase sequentially, the ability of MA to activate SH group also increase sequentially. The general rule is that the catalytic activity of the potassium salt is higher than that of the corresponding sodium salt, while the lithium salt has no catalytic activity. In various inorganic acid potassium salts, the catalytic activity of KA has a positive correlation with the pKa of its corresponding conjugate acid HA. The catalytic activity of KA is lower when its conjugate acid HA is more acidic. In order to explore the universality of the mechanism of potassium salt catalytic activation of -SH, K3PO4 was used as catalyst to investigate the catalytic activity of β-hydroxyethylation of six different structures of thiols with EC at different reaction temperatures. Due to the acidic difference of mercaptan, the rule is that the stronger the acidity of the mercaptan, the higher the reactivity, and the easier the S-H bond is to dissociate. The advantages of the reaction are as follows:no solvent is involved, the molar ratio of mercaptan to EC is close to the theoretical amount, the selectivity of the product β-hydroxyethyl sulfide is >99%, no halogen containing reactant involved and therefore no halogen salt byproduct is formed in the final product.
  • 加载中
    1. [1]

      Liu L, Qiang J, Bai S, et al. Appl. Organomet. Chem., 2017, 31(11):e3810  doi: 10.1002/aoc.3810

    2. [2]

      Feng M, Tang B H, Liang S, et al. Curr. Top. Med. Chem., 2016, 16(11):1200-1216  doi: 10.2174/1568026615666150915111741

    3. [3]

      Qiao Z, Jiang X. Org. Biomol. Chem., 2017, 15(9):1942-1946  doi: 10.1039/C6OB02833K

    4. [4]

      Sun S, He Z, Huang M, et al. Bioorg. Med. Chem., 2018, 26(9):2381-2391  doi: 10.1016/j.bmc.2018.03.039

    5. [5]

      Carlson D A. Kirk-Othmer Encyclopedia of Chemical Technology:Vol.21 4th Ed. Kroschwitz J I, Howe-Grant M. Ed., New York:John Wiley & Sons, 2000:112-124

    6. [6]

      WANG Ming, WANG Cui-Hong, JIANG Xue-Feng. Chinese J. Org. Chem., 2019, 39(8):2139-2147
       

    7. [7]

      XIAO Cai-Qin, XU Xin-Bing, RU Li-Jun. Chinese Journal of Synthetic Chemistry, 2019, 27(4):316-327
       

    8. [8]

      LIU Ji-Wei, GUAN Shu-Xia, GU Chang-Sheng. Chinese J. Inorg. Chem., 2018, 34(11):2081-2087  doi: 10.11862/CJIC.2018.254
       

    9. [9]

      WANG Hong-Yan, WEI Xu-Ning. Chin. J. Appl. Chem., 2018, 35(10):1184-1189  doi: 10.11944/j.issn.1000-0518.2018.10.170406

    10. [10]

      TANG Hai-Yan, ZHANG Ya-Dong, WANG Zhen-Xing. Speciality Petrochemicals, 2010, 27(3):23-26  doi: 10.3969/j.issn.1003-9384.2010.03.007

    11. [11]

      Watts R F, Murakami Y, Richard K M, et al. US Patent, 6337309. 2002-1-8.

    12. [12]

      Lachut F J. US Patent, 6432884. 2002-8-13.

    13. [13]

      Veierov D. US Patent, 6001874. 1999-12-14.

    14. [14]

      Imenez D, Janssen G, Long D, et al. US Patent, 9295250. 2016-03-29.

    15. [15]

      Byers R E. J. Tree Fruit Prod., 1999, 2(2):59-78  doi: 10.1300/J072v02n02_06

    16. [16]

      Klimpel R R, Hansen R D, Strojny E J. US Patent, 4735711. 1988-4-5.

    17. [17]

      Shaw J E. US Patent, 5283368. 1994-2-1.

    18. [18]

      Lissel M, Schmidt S, Neumann B. Synthesis, 1986, 17(43):382-383

    19. [19]

      Carlson W W. US Patent, 2448767. 1948-09-07.

    20. [20]

      Upare P P, Kinage A K, Shingote S K, et al. Green Chem. Lett. Rev., 2012, 5(1):19-26

    21. [21]

      Wang P, Fei Y, Long Y, et al. J. CO2 Util., 2018, 28:403-407  doi: 10.1016/j.jcou.2018.10.020

    22. [22]

      Zhang Q, Yuan H Y, Fukaya N, et al. ACS Sustainable Chem. Eng., 2018, 6(5):6675-6681  doi: 10.1021/acssuschemeng.8b00449

    23. [23]

      Zheng T, Wu Z, Xie Q, et al. J. Am. Oil Chem. Soc., 2018, 95(1):79-88  doi: 10.1002/aocs.12023

    24. [24]

      Sankar M, Nair C M, Murty K, et al. Appl. Catal. A, 2006, 312:108-114  doi: 10.1016/j.apcata.2006.06.034

    25. [25]

      Busca G. Ind. Eng. Chem. Res., 2009, 48(14):6486-6511  doi: 10.1021/ie801878d

    26. [26]

      Speight J G. Lange's Handbook of Chemistry. 6th Ed. New York:McGraw-Hill, 2005:330-330

    27. [27]

      Marino T, Russo N, Toscano M. J. Phys. Chem. B, 2003, 107(11):2588-2594  doi: 10.1021/jp027063j

    28. [28]

      Ho T L. Chem. Rev., 1975, 75(1):1-20  doi: 10.1021/cr60293a001

    29. [29]

      Lian P, Johnston R C, Parks J M, et al. J. Phys. Chem. A, 2018, 122(17):4366-4374  doi: 10.1021/acs.jpca.8b01751

    30. [30]

      Zheng Y, Zheng W, Zhu D, et al. New J. Chem., 2019, 43(13):5239-5254  doi: 10.1039/C8NJ06259E

    31. [31]

      Patai S. The Chemistry of the Thiol Group. London:John Wlley & Sons, 1974:396-398

    32. [32]

      Hunter N E, Seybold P G. Mol. Phys., 2014, 112(3/4):340-348

    33. [33]

      Tundo P, Rossi L, Loris A. J. Org. Chem., 2005, 70(6):2219-2224  doi: 10.1021/jo048532b

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    10. [10]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(8)
  • Abstract views(417)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return