Citation: ZHONG Qin-Yue, LIU Yao, LIU Xin-Mei, ZHANG Wen-Kang, WANG Hai-Bo. Preparation and Photocatalytic Performance of CdS@g-C3N4 Core-Shell Composite Nanoparticles[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(5): 864-874. doi: 10.11862/CJIC.2020.074 shu

Preparation and Photocatalytic Performance of CdS@g-C3N4 Core-Shell Composite Nanoparticles

  • Corresponding author: LIU Xin-Mei, xinmeiliu628@163.com
  • Received Date: 6 December 2019
    Revised Date: 17 February 2020

Figures(16)

  • The CdS@g-C3N4 core-shell composite nanoparticles were successfully prepared by a hydrothermal method with the addition of ethylenediamine and EDTA-2Na. The nucleation and growth mechanism of CdS@g-C3N4 was also discussed. The specific surface area of CdS@g-C3N4 core-shell composite nanoparticles was 14 times larger than that of the pure CdS nanoparticles. CdS@g-C3N4, which was prepared under the reaction conditions of 180℃, 4 h and 1.9:1 (the mass ratio of CdS to g-C3N4), exhibited the best catalytic performance. The degradation efficiency of RhB with CdS@g-C3N4 composite reached 95.2% after 2 h of irradiation under 300 W xenon, which was significantly higher than that over pure CdS. After three cycles, CdS@g-C3N4 showed no obvious changes in the morphology, structure and photocatalytic performance.
  • 加载中
    1. [1]

      ZHAO Xiao-Hua, SU Shuai, WU Guang-Li, et al. Chinese J. Inorg. Chem., 2017, 33(2):276-284
       

    2. [2]

      Su J Z, Zhang T, Wang L, et al. Chin. J. Catal., 2017, 38(3):489-497

    3. [3]

      Wang Z Y, Chen J X, Zhang F A, et al. Rare Met. Mater. Eng., 2008, 37(2):330-333

    4. [4]

      Liu L, Hu P R, Cui W Q, et al. Int. J. Hydrogen Energy., 2017, 42(27):17435-17445  doi: 10.1016/j.ijhydene.2017.02.171

    5. [5]

      LANG Di(郎笛). Thesis for the Doctorate of Huazhong Agricultural University(华中农业大学博士论文). 2016.

    6. [6]

      Li X Y, Peng K. Appl. Clay Sci., 2018, 165:188-196  doi: 10.1016/j.clay.2018.08.017

    7. [7]

      PAN Jin-Bo, LIU Jian-Jun, MA He-Cheng, et al. Chinese J. Inorg. Chem., 2018, 34(8):1421-1429
       

    8. [8]

      WANG Xiao-Xue, GAO Jian-Ping, ZHAO Rui-Ru, et al. Chinese J. Inorg. Chem., 2018, 34(6):1059-1064
       

    9. [9]

      LI Cao-Long, ZHAO Yu-Ting, CAO Fei, et al. Chinese J. Inorg. Chem., 2013, 29(12):2535-2542
       

    10. [10]

      LI Na, WANG Ming, ZHAO Bei-Ping, et al. Chinese J. Inorg. Chem., 2016, 32(6):1033-1040
       

    11. [11]

      Wang D K, Zeng H, Xiong X, et al. Sci. Bull. https://doi.org/10.1016/j.scib.2019.10.015.

    12. [12]

      Zhou G, Zheng L L, Wang D K, et al. Chem. Commun., 2019, 55:4150-4153  doi: 10.1039/C9CC01161G

    13. [13]

      Wang D K, Ye P, Li K L, et al. Appl. Catal. B, 2020, 260:118182-118191  doi: 10.1016/j.apcatb.2019.118182

    14. [14]

      Wang D K, Li X, Zheng L L, et al. Nanoscale, 2018, 10:19509-19516  doi: 10.1039/C8NR06691D

    15. [15]

      Yin C C, Cui L F, Pu T T, et al. Appl. Surf. Sci., 2018, 456:464-472  doi: 10.1016/j.apsusc.2018.06.137

    16. [16]

      Li Y, Wei X, Li H, et al. RSC Adv., 2015, 5(19):14074-14080  doi: 10.1039/C4RA14690E

    17. [17]

      WANG Zhi-Ping, ZHAO Jing, WANG Ke-Zhen. Acta Energiae Solaris Sinica, 2013, 34(8):1311-1316  doi: 10.3969/j.issn.0254-0096.2013.08.002

    18. [18]

      SHEN Qian-Qian, TIAN Bin, XUE Jin-Bo, et al. Chinese J. Inorg. Chem., 2014, 30(8):1839-1844
       

    19. [19]

      Chen D Y, Ji G, Ma Y, et al. ACS Appl. Mater. Interfaces, 2011, 3(8):3078-3083  doi: 10.1021/am200592r

    20. [20]

      Wang H Y, Gong R, Qian X L. J. Membr. Sci., 2018, 8(1):14-21

    21. [21]

      Kumar S, Baruah A, Tonda S, et al. Nanoscale, 2014, 6:4830-4843  doi: 10.1039/c3nr05271k

    22. [22]

      WANG Yi-Lin, HUANG Xiao-Feng, LU Jian-Ping. Journal of Guangxi University:Natural Science Edition, 2007, 32(2):147-149, 162

    23. [23]

      BAO Shu-Fen. Journal of Liaoning University, 2010, 37(2):148-151  doi: 10.3969/j.issn.1000-5846.2010.02.014

    24. [24]

      Fu J, Chang B B, Tian Y L, et al. J. Mater. Chem. A, 2013, 1:3083-3090  doi: 10.1039/c2ta00672c

    25. [25]

      Yang S B, Gong Y J, Zhang J S, et al. Adv. Mater., 2013, 25:2452-2456  doi: 10.1002/adma.201204453

    26. [26]

      Dong F, Wu L W, Sun Y J, et al. J. Mater. Chem., 2011, 21:15171-15174  doi: 10.1039/c1jm12844b

    27. [27]

      Muhammad A, Li Q Y, Yao J C, et al. J. Environ. Chem. Eng., 2017, 5(6):5358-5368  doi: 10.1016/j.jece.2017.10.024

    28. [28]

      Zhang S L, Hang N T, Zhang Z J, et al. J. Nanomater., 2017, 7(1):76-86

    29. [29]

      ZHANG Li, LIANG Qing-Man, DAI Chao-Hua, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(7):1335-1342

    30. [30]

      GAO Ning, GUO Fan, ZHENG Wei-Wei, et al. Journal of Synthetic Crystals, 2005, 4:632-636

    31. [31]

      LI Jiao-Jiao, ZHAO Wei-Feng, ZHANG Gai, et al. Chem. J. Chin. Univ., 2018, 39(12):2719-2724  doi: 10.7503/cjcu20180460

    32. [32]

      Li Z, Zhou Z, Ma J W, et al. Appl. Catal. B, 2018, 237:288-294  doi: 10.1016/j.apcatb.2018.05.087

    33. [33]

      Zou S, Fu Z H, Xiang C, et al. Chin. J. Catal., 2015, 36(7):1077-1085  doi: 10.1016/S1872-2067(15)60827-0

    34. [34]

      ZHANG Wen-Kang, LIANG Yan-Yi, LIU Yao, et al. Journal of Guangxi University of Science and Technology, 2018, 29(4):66-73

    35. [35]

      Zhang H G, Fen L J, Li C H, et al. J. Fuel Cell Sci., 2018, 46(7):871-878

    36. [36]

      LIANG Hong-Yu, ZOU He, HU Shao-Zheng, et al. Journal of Molecular Catalysis, 2018, 32(2):152-162

    37. [37]

      JIANG Jian-Gang, REN Wen-Yi, LI Xia, et al. Semiconductor Optoelectornics, 2019, 40(1):82-87

    38. [38]

      Chong B, Chen L, Han D Z, et al. Chin. J. Catal., 2019, 40(6):959-968

    39. [39]

      Liu X M, Huang W Y, Huang G X, et al. Ceram. Int., 2015, 41:11710-11718

    40. [40]

      Yu H, Chen F Y, Chen F, et al. Appl. Surf. Sci., 2015, 6:86-91

    41. [41]

      ZHAN Hong-Quan, DENG Ce, WU Chuan-Qi, et al. Journal of Synthetic Crystals, 2019, 48(2):190-195

    42. [42]

      Bai Z M, Yan X Q, Li Y, et al. Adv. Energy Mater., 2016, 6(3):1459-1501

    43. [43]

      XIONG Jian, HE Lu-Ying. Chinese Journal of Vacuum Science and Technology, 2017, 37(12):1160-1165

    44. [44]

      Cui Y J, Ding Z X, Liu P. Phys. Chem. Chem. Phys., 2012, 14(4):1455-1462

    45. [45]

      Wang X, Maeda K, Thomas A. Nat. Mater., 2009, 8(1):76-80

    46. [46]

      Liu X M, Jiang Y, Guo W M, et al. Chem. Eng. J., 2013, 5(7):466-474

    47. [47]

      ZHOU Wen-Jun, SHEN Bo-Xiong, ZHANG Qin, et al. Journal of Fuel Chemistry and Technology, 2019, 47(2):249-256

    48. [48]

      HAO Yan-Zhong, CAO Yin-Hu, SUN Bao, et al. Acta Chim. Sinica, 2012, 70(10):1139-1144

    49. [49]

      Long J, Liu H L, Wu S J, et al. ACS Catal., 2013, 3(4):647-654

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    3. [3]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    18. [18]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

Metrics
  • PDF Downloads(4)
  • Abstract views(1274)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return