Carbon Nanotube-Based Bimetallic Nitride Co3W3N for Electrocatalytic Synthesis of Ammonia under Ambient Condition
- Corresponding author: HE Jian-Ping, jianph@nuaa.edu.cn
Citation: JIANG Cheng, GUO Hu, LI Ling-Hui, WANG Tao, FAN Xiao-Li, SONG Li, GONG Hao, XIA Wei, GAO Bin, HE Jian-Ping. Carbon Nanotube-Based Bimetallic Nitride Co3W3N for Electrocatalytic Synthesis of Ammonia under Ambient Condition[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(3): 467-474. doi: 10.11862/CJIC.2020.047
Wang S Y, Ichihara F, Pang H, et al. Adv. Funct. Mater., 2018, 28(50):1803309
doi: 10.1002/adfm.201803309
Han J R, Liu Z C, Ma Y J, et al. Nano Energy, 2018, 52:264-270
doi: 10.1016/j.nanoen.2018.07.045
Zhao R B, Xie H T, Chang L, et al. EnergyChem, 2019, 1:100011
doi: 10.1016/j.enchem.2019.100011
Peng Y, Lu B Z, Chen S W. Adv. Mater., 2018, 30(48):1801995
doi: 10.1002/adma.201801995
Skulason E, Bligaard T, Gudmundsdóttir S, et al. Phys. Chem. Chem. Phys., 2012, 14(3):1235-1245
doi: 10.1039/C1CP22271F
Chen X Z, Zhao X J, Kong Z Z, et al. J. Mater. Chem. A, 2018, 6(44):21941-21948
doi: 10.1039/C8TA06497K
Cheng H, Ding L X, Chen G F, et al. Adv. Mater., 2018, 30(46):1803694
doi: 10.1002/adma.201803694
Li Q, He L, Sun C, et al. J. Phys. Chem. C, 2017, 121(49):27563-27568
doi: 10.1021/acs.jpcc.7b10522
Zhong H X, Zhang H M, Liang Y M, et al. J. Power Sources, 2007, 164(2):572-577
doi: 10.1016/j.jpowsour.2006.11.080
Li G R, Song J, Pan G L, et al. Energy Environ. Sci., 2011, 4(5):1680-1683
doi: 10.1039/c1ee01105g
Zhang N, Jalil A, Wu D, et al. J. Am. Chem. Soc., 2018, 140(30):9434-9443
doi: 10.1021/jacs.8b02076
Minteer S D, Christopher P, Linic S. ACS Energy Lett., 2018, 4(1):163-166
Chen S, Perathoner S, Ampelli C, et al. Angew. Chem. Int. Ed., 2017, 56(10):2699-2703
doi: 10.1002/anie.201609533
GUO Hu, LI Ling-Hui, WANG Tao, et al. Chinese J. Inorg. Chem., 2018, 34(11):2032-2040
doi: 10.11862/CJIC.2018.263
Gao X, Wen Y J, Qu D, et al. ACS Sustainable Chem. Eng., 2018, 6(4):5342-5348
doi: 10.1021/acssuschemeng.8b00110
Li L Q, Tang C, Xia B Q, et al. ACS Catal., 2019, 9(4):2902-2908
doi: 10.1021/acscatal.9b00366
Han Y, Wang Y G, Chen W, et al. J. Am. Chem. Soc., 2017, 139(48):17269-17272
doi: 10.1021/jacs.7b10194
Xia W, Tang J, Li J, et al. Angew. Chem., Int. Ed., 2019, 58(38):13354-13359
doi: 10.1002/anie.201906870
Kong Y, Li Y, Yang B, et al. J. Mater. Chem. A, 2019, 7(46):26272-26278
doi: 10.1039/C9TA06076F
Chen G F, Cao X, Wu S, et al. J. Am. Chem. Soc., 2017, 139(29):9771-9774
doi: 10.1021/jacs.7b04393
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002