Citation: WEI Wei, WU Ai-Chun, QIAO Zhi-Wei, LI Shu-Hua, LIANG Hong, PENG Feng. Effect of Sr and Fe Doped LaCoO3 on Catalytic Oxidation of Soot and Sulfur Resistance[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(1): 87-96. doi: 10.11862/CJIC.2020.031 shu

Effect of Sr and Fe Doped LaCoO3 on Catalytic Oxidation of Soot and Sulfur Resistance

Figures(8)

  • A series of perovskite-type La1-xSrxCo1-yFeyO3 catalysts were successfully prepared by the citric acid-EDTA complexation. The catalysts exhibited excellent catalytic oxidation soot activity and sulfur resistance. The characterization of X-ray diffraction (XRD), fourier transform infrared spectra (FT-IR), scanning electron microscope (SEM), H2-temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) and SO2-temperature programmed desorption (SO2-TPD) were used to reveal the effect of Sr and Fe doping on the physicochemical properties and sulfur tolerance of La1-xSrxCo1-yFeyO3 catalysts. Experimental results demonstrated that when the Sr doped with LaCoO3, it was beneficial for the catalyst to form more surface adsorption oxygen (O2- or O-) and oxygen vacancies, thereby improving both the low-temperature redox ability and catalytic oxidation soot activity of catalyst. Ti (ignition temperature of soot) and Tm (complete conversion temperature of soot) are only 284 and 347℃. Furthermore, with the doping of Fe, the low-temperature redox performance of catalyst was further improved, because the high-valent ions (Fe4+) were formed in the surface of catalyst, the Fe4+ ion could enhance the oxidation soot activity of catalyst. Moreover, the poisoning of SO2 was mainly attributed to the sulfation (SO32-, SO42-) of Co2+/Co3+ and surface adsorbed oxygen, leading to deactivating the active site (O2- or O- and Fe4+) of catalyst. Simultaneous doping of Sr and Fe can form a strong interaction, which can effectively inhibit the deposition of sulfur species on the catalyst surface and reduce the poisoning of SO2 into the catalyst. Both XPS and SO2-TPD characterizations showed that the sulfur resistance of catalyst was mainly attributed the competitive adsorption of metal ions (Fe3+) on SO2, which could effectively reduce the poisoning of SO2 on the surface adsorption oxygen and Fe4+. TPO (temperature programmed oxidation) activity characterization showed that LaSrCoFeO3-S still maintained good catalytic oxidation soot activity. Ti and Tm were 320 and 361℃, respectively, indicating that the simultaneous doping of Sr and Fe has excellent low-temperature catalytic soot activity and good sulfur poisoning ability.
  • 加载中
    1. [1]

      Li Z Q, Meng M, Zha Y Q, et al. Appl. Catal. B, 2012, 121:65-74

    2. [2]

      WANG Shi-Dan, ZHU Yi, ZHANG Hai-Long, et al. Chinese J. Inorg. Chem., 2014, 30(8):1827-1833
       

    3. [3]

      RAO Cheng, LIU Rui, FENG Xiao-Hui, et al. Chin. J. Catal., 2018, 39(10):1683-1694

    4. [4]

      Van Setten B A A L, Makkee M, Moulijn J A. Catal. Rev. Sci. Eng., 2001, 43(8):489-564

    5. [5]

      MOU Yi-Meng, LIANG Hong, LI Shu-Hua, et al. Chinese J. Inorg. Chem., 2016, 32:602-608  doi: 10.11862/CJIC.2016.074
       

    6. [6]

      Matarrese R, Castoldi L, Lietti L, et al. Top. Catal., 2009, 52:2041-2046  doi: 10.1007/s11244-009-9400-4

    7. [7]

      Shangguan W, Teraoka Y, Kagawa S. Appl. Catal. B, 1998, 16:149-154  doi: 10.1016/S0926-3373(97)00068-4

    8. [8]

      Teraoka Y, Nakano K, Shangguan W, et al. Catal. Today, 1996, 27:107-113  doi: 10.1016/0920-5861(95)00177-8

    9. [9]

      Fang S Q, Wang L, Sun Z C, et al. Catal. Commun., 2014, 49:15-19  doi: 10.1016/j.catcom.2014.01.029

    10. [10]

      Li S X, Kato R, Wang Q, et al. Appl. Catal. B, 2010, 93:383-386  doi: 10.1016/j.apcatb.2009.10.012

    11. [11]

      Yi Y N, Liu H, Chu B X. et al. Chem. Eng. J., 2019, 369:511-521  doi: 10.1016/j.cej.2019.03.066

    12. [12]

      Ji K M, Dai H X, Deng J G, et al. Chem. Eng. J., 2013, 214:262-271  doi: 10.1016/j.cej.2012.10.083

    13. [13]

      Liu Y A, Zheng H T, Liu J R, et al. Chem. Eng. J., 2002, 89:213-221  doi: 10.1016/S1385-8947(02)00013-X

    14. [14]

      GAO Yong-Hua, GAO Li-Zhen, CUI Jia-Li, et al. Journal of Taiyuan University of Technology, 2017, 48:747-752

    15. [15]

      Liu F D, He H, Zhang C B. Chem. Commun., 2008, 164:2043-2045

    16. [16]

      Fabrizioli P, Burgi T, Baiker A. J. Catal., 2002, 206:143-154  doi: 10.1006/jcat.2001.3475

    17. [17]

      Liu F D, Shan W P, Lian Z H, et al. Appl. Catal. B, 2018, 230:165-176  doi: 10.1016/j.apcatb.2018.02.052

    18. [18]

      Li Z Q, Meng M, Li Q A, et al. Chem. Eng. J., 2010, 164:98-105  doi: 10.1016/j.cej.2010.08.036

    19. [19]

      Jin R B, Liu Y, Wang Y, et al. Appl. Catal. B, 2014, 148-149:582-588  doi: 10.1016/j.apcatb.2013.09.016

    20. [20]

      Yu C L, Huang B C, Dong L F, et al. Chem. Eng. J., 2017, 316:1059-1068  doi: 10.1016/j.cej.2017.02.024

    21. [21]

      Li S H, Huang B C, Yu C L, et al. Catal. Commun., 2017, 98:47-51  doi: 10.1016/j.catcom.2017.04.046

    22. [22]

      Liu H, Fan Z X, Sun C Z, et al. Appl. Catal. B, 2019, 244:671-683  doi: 10.1016/j.apcatb.2018.12.001

    23. [23]

      Jiang L J, Liu Q C, Ran C J, et al. Chem. Eng. J., 2019, 370:810-821  doi: 10.1016/j.cej.2019.03.225

    24. [24]

      Yu X H, Wang L Y, Chen M Z, et al. Appl. Catal. B, 2019, 254:246-259  doi: 10.1016/j.apcatb.2019.04.097

    25. [25]

      Liang H, Mou Y M, Zhang H W, et al. Catal. Today, 2017, 281:477-481  doi: 10.1016/j.cattod.2016.05.015

    26. [26]

      Li K B, Li X J, Zhu K G, et al. J. Appl. Phys., 1997, 81:6943-6947  doi: 10.1063/1.365234

    27. [27]

      Yamaguchi T, Jin T, Tanabe K. J. Phys. Chem., 1986, 90:3148-3152  doi: 10.1021/j100405a022

    28. [28]

      Kostoglou M, Housiada P, Konstandopoulos A G. Chem. Eng. Sci., 2003, 58:3273-3283  doi: 10.1016/S0009-2509(03)00178-7

    29. [29]

      Liang H, Hong Y X, Zhu C Q, et al. Catal. Today, 2013, 201:98-102  doi: 10.1016/j.cattod.2012.04.036

    30. [30]

      Li W, Zhang C, Li X, et al. Chin. J. Catal., 2018, 39(10):1653-1663  doi: 10.1016/S1872-2067(18)63099-2

    31. [31]

      Li B, Ren Z Y, Ma Z X, et al. Catal. Sci. Technol., 2015, 6:1719-1725

    32. [32]

      Tan R Q, Zhu Y F. Appl. Catal. B, 2005, 58:61-68  doi: 10.1016/j.apcatb.2004.12.003

    33. [33]

      Zhao Z, Yang X, Wu Y. Appl. Catal. B, 1996, 8:281-298  doi: 10.1016/0926-3373(95)00067-4

    34. [34]

      Chen L Q, Li R, Li Z B, et al. Catal. Sci. Technol., 2017, 7:3243-3257  doi: 10.1039/C7CY00672A

    35. [35]

      Peng Y, Wang D, Li B, et al. Environ. Sci. Technol., 2017, 51:11943-11949  doi: 10.1021/acs.est.7b03309

    36. [36]

      Machado L C, Marins A A L, Muri E J B, et al. J. Therm. Anal. Calorim., 2009, 97(1):289-296

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    17. [17]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    18. [18]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

Metrics
  • PDF Downloads(3)
  • Abstract views(771)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return