Citation: HOU Xiao-Fei, ZHAO Wan-Nan, MA Jing, SUN Ji-Qiang, LI Yan-Hong. Synthesis and Luminescence Properties of Eu3+ doped LaBO3 Phosphors[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(2): 276-282. doi: 10.11862/CJIC.2020.016 shu

Synthesis and Luminescence Properties of Eu3+ doped LaBO3 Phosphors

  • Corresponding author: LI Yan-Hong, lyhciom@126.com
  • Received Date: 3 August 2019
    Revised Date: 8 November 2019

Figures(9)

  • LaBO3:Eu3+ phosphors with different crystal phase were prepared by heat treatment precursor prepared by hydrothermal method. The structure, morphology and luminescence properties of the samples were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), infrared spectroscopy and fluorescence spectroscopy. The effects of boric acid dosage, heat treatment temperature, and initial solution pH of precursor on structure and luminescence properties of the samples were studied. The results of XRD showed that the phosphors with orthogonal structure, monoclinic structure and both phase mixed structure can be obtained. LaBO3 with pure orthogonal structure can be obtained by heating treatment at 700℃ for precursors synthesized with initial solution pH=8 and molar ratio of rare earth ions to boric acid of 1:3 and 1:4, respectively. It is convenient to obtained phosphors with orthogonal structure at proper boric acid dosage, higher heat treatment temperature and higher initial solution pH value. Infrared spectra showed that the change of initial solution pH and boric acid dosage effected the composition of precursor, and the heat treatment temperature effected the crystal phase transformation. SEM showed that particle size of LaBO3:Eu3+ phosphor decreased with the increase of initial solution pH, which were consistent with the results calculated from XRD. The excitation spectra of samples consisted of the broad band in a range of 200~350 nm and another weak narrow lines in a range of 350~450 nm, which were assigned to O2--Eu3+ charge transfer band and f-f transitions of Eu3+ ions, respectively. The emission spectra of samples consisted of sharp lines ranging from 500 to 750 nm, which are associated with the transitions from the excited 5D0-7FJ (J=1, 2, 3, 4) of Eu3+ ions. The main emission peak at 615 nm was due to the 5D0-7F2 transitions of Eu3+, the peak at 593 nm was attributed to 5D0-7F1 transitions of Eu3+. The excitation and emission intensities are related to the structure of the samples. LaBO3:Eu3+ with orthogonal structure has higher ultraviolet absorption and higher emission intensity with pure red light.
  • 加载中
    1. [1]

      NING Hong-Yu, CHEN Zhi-Yuan, DONG Chao, et al. Chinese Journal of Luminescence, 2018, 39(8):1087-1094
       

    2. [2]

      WU Zhan-Chao, WANG Shuai, LIU Jie. New Chemical Materials, 2015, 43(13):13-15
       

    3. [3]

      Wang D Y, Chen T M, Cheng B M. Inorg. Chem., 2012, 51:2961-2965  doi: 10.1021/ic202241h

    4. [4]

      Wei H W, Shao L M, Jiao H, et al. Opt. Mater., 2018, 75:442-447  doi: 10.1016/j.optmat.2017.10.011

    5. [5]

      Lakshmanan A, Bhaskar R S, Thomas P C, et al. Mater. Lett., 2010, 64:1809-1812  doi: 10.1016/j.matlet.2010.05.034

    6. [6]

      ZHU Fan, YOU Fang-Tian, SHI Qiu-Feng, et al. Chinese Journal of Luminescence, 2015, 36(7):751-756
       

    7. [7]

      Srivastava S, Mondal A, Sahu N K, et al. RSC Adv., 2015, 5:11009-11012  doi: 10.1039/C4RA12745E

    8. [8]

      GAO Rong, ZHANG Zhi-Jun, ZHAO Jing-Tai. J. Chin. Rare Earth Soc., 2014, 32(4):387-396
       

    9. [9]

      MA Jing, ZHAO Wan-Nan, LI Yan-Hong. Chinese Journal of Luminescence, 2018, 39(9):1213-1219
       

    10. [10]

      ZHAO Wan-Nan, MA Jing, ZHANG Zhen-Qian, et al. Journal of the Chinese Ceramic Society, 2017, 45(4):526-541
       

    11. [11]

      Sari S, Senberber F T, Meral Y, et al. Mater. Chem. Phys., 2017, 200:196-203  doi: 10.1016/j.matchemphys.2017.07.056

    12. [12]

      Liang P, Liu J W, Liu Z H. RSC Adv., 2016, 6:89113-89123  doi: 10.1039/C6RA19101K

    13. [13]

      Grzyb T, Kubasiewicz K, Szczeszak A, et al. Dalton Trans., 2015, 44:4063-4069  doi: 10.1039/C4DT03667K

    14. [14]

      Yi H, Wu L, Wu L W, et al. Inorg. Chem., 2016, 55:6487-6495  doi: 10.1021/acs.inorgchem.6b00552

    15. [15]

      LI Qi-Hua, LIU Li-Min, ZENG Li-Hua, et al. Chinese Journal of Luminescence, 2006, 27(2):183-186  doi: 10.3321/j.issn:1000-7032.2006.02.009

    16. [16]

      Rambabu U, Han S D. RSC Adv., 2013, 3:1368-1379  doi: 10.1039/C2RA21304D

    17. [17]

      DONG Yan, JIANG Jian-Qing, XIAO Rui, et al. J. Chin. Rare Earth Soc., 2004, 22(4):201-205
       

    18. [18]

      Zeng Y B, Li Z Q, Liang Y F, et al. Inorg. Chem., 2013, 52:9590-9596  doi: 10.1021/ic401299h

    19. [19]

      YIN Xin-Hao, LI Yun-Hui, GAO Ying, et al. Chinese J. Inorg. Chem., 2014, 30(9):2064-2074
       

    20. [20]

      GUO Fan, FU Pei-Zhen, WANG Jun-Xin, et al. J. Synth Cryst, 2000, 29(5):16
       

    21. [21]

      LI Lin-Yan, LI Bao-Guo, LIAO Fu-Hui, et al. Acta Phys.-Chim. Sin., 2005, 21(7):769-773  doi: 10.3866/PKU.WHXB20050714

    22. [22]

      Jia G, Zhang C M, Wang C Z, et al. CrystEngComm, 2012, 14:579-584  doi: 10.1039/C1CE05973D

    23. [23]

      Gadsden J A. Infrared Spectra of Minerals and Related Inorganic Compounds. London:Butterworth, 1975.

    24. [24]

      Qin C X, Qin L, Chen G Q, et al. J. Nanopart. Res., 2013, 15:1827-1836  doi: 10.1007/s11051-013-1827-7

    25. [25]

      Shmyt'ko I M, Kiryakin I N, Strukova G K. Phys. Solid State, 2013, 55(7):1468-147  doi: 10.1134/S1063783413070305

    26. [26]

      Cansin B, Okan E, Aysen Y. Solid State Sci., 2012, 14:1710-1716  doi: 10.1016/j.solidstatesciences.2012.07.026

  • 加载中
    1. [1]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    2. [2]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    3. [3]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    4. [4]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    5. [5]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    6. [6]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    7. [7]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    8. [8]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    9. [9]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    10. [10]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    13. [13]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    14. [14]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    15. [15]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    16. [16]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

Metrics
  • PDF Downloads(18)
  • Abstract views(2436)
  • HTML views(413)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return