Citation: CHENG Jiang-Hao, SU Ya-Xin, LI Qian-Cheng, WEN Ni-Ni, DENG Wen-Yi, ZHOU Hao, ZHAO Bing-Tao. Selective Catalytic Reduction of NO by C3H6 over Cu-Fe-PILC[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(12): 2291-2300. doi: 10.11862/CJIC.2019.255 shu

Selective Catalytic Reduction of NO by C3H6 over Cu-Fe-PILC

  • Corresponding author: SU Ya-Xin, suyx@dhu.edu.cn
  • Received Date: 14 June 2019
    Revised Date: 14 September 2019

Figures(7)

  • 1.0Fe-PILC was prepared by ion-exchange method with Na-Mont. nCu-Fe-PILC with different copper loadings were prepared by ultrasonic impregnation method, and used for the selective catalytic reduction of NO by C3H6 under oxygen-rich conditions. The microstructure and physicochemical properties of the catalysts were characterized by N2 adsorption-desorption, XRD, UV-Vis, H2-TPR and Py-FTIR, and the catalytic reaction mechanism was further explained. The results showed that the introduction of Cu improved the activity of the medium and low temperature and the resistance to H2O and SO2, among which more than 69.8% NO conversion at below 300℃, above 99% NO conversion after 400℃ and good resistance to H2O and SO2 were achieved by 9Cu-Fe-PILC. XRD and N2 adsorption-desorption results indicated that the SCR activity of the catalysts was related to the adsorption capacity and the supported active components. UV-Vis studies showed that 9Cu-Fe-PILC got strong activity at the medium and low temperature, which was related to its more isolated Cu2+. The H2-TPR results showed that the nCu-Fe-PILC modified by Cu had a better redox ability at the medium and low temperature compared with 1.0Fe-PILC. The results of Py-FTIR indicated that the surface of nCu-Fe-PILC contained both Lewis acid and Brønsted acid. Lewis acid was the main factor affecting the activity of SCR.
  • 加载中
    1. [1]

      Iwamoto M, Yahiro H, Yu U Y. Catal., 1990, 32(6):430-433

    2. [2]

      Held W, Koenig A, Richter T, et al. SAE Trans., 1990, 99(4):209-216

    3. [3]

      Castellanos I, Marie O. Appl. Catal. B:Environ., 2018, 223:143-153  doi: 10.1016/j.apcatb.2017.03.052

    4. [4]

      LIU Jin, TANG Fu-Shun, CHEN Yan-Hong, et al. Chinese J. Inorg. Chem., 2014, 30(8):1790-1800
       

    5. [5]

      Xu G Y, Ma J Z, He G Z, et al. Appl. Catal. B:Environ., 2017, 207:60-71  doi: 10.1016/j.apcatb.2017.02.001

    6. [6]

      Gu H, Chun K M, Song S. Int. J. Hydrogen Energy, 2015, 40(30):9602-9610  doi: 10.1016/j.ijhydene.2015.05.070

    7. [7]

      SU Ya-Xin, SU A-Long, CHENG Hao. J. China Coal Soc., 2013, 38(s1):206-210
       

    8. [8]

      SU Ya-Xin, LU Zhe-Xing, ZHOU Hao, et al. J. Fuel Chem. Technol., 2014, 42(12):1470-1477  doi: 10.3969/j.issn.0253-2409.2014.12.009

    9. [9]

      DOU Yi-Feng, SU Ya-Xin, LU Zhe-Xing, et al. J. Fuel Chem. Technol., 2015, 43(10):1273-1280  doi: 10.3969/j.issn.0253-2409.2015.10.017

    10. [10]

      ZHOU Hao, LIAO Wen-Yu, SU Ya-Xin, et al. Clean Coal Technology, 2015, 21(2):51-55
       

    11. [11]

      Zhou H, Su Y X, Liao W Y, et al. Appl. Catal. A:Gen., 2015, 505:402-409  doi: 10.1016/j.apcata.2015.08.025

    12. [12]

      Qian W Y, Su Y X, Yang X, et al. J. Fuel Chem. Technol., 2017, 45(12):1499-1507  doi: 10.1016/S1872-5813(17)30067-1

    13. [13]

      LI Qian-Cheng, SU Ya-Xin, DONG Shi-Lin, et al. J. Fuel Chem. Technol., 2018, 46(10):1240-1248  doi: 10.3969/j.issn.0253-2409.2018.10.012

    14. [14]

      Sato S, Yu-u Y, Yahiro H, et al. Appl. Catal., 1991, 70(1):L1-L5
       

    15. [15]

      Lu G, Li X Y, Qu Z P, et al. Chem. Eng. J., 2011, 168(3):1128-1133  doi: 10.1016/j.cej.2011.01.095

    16. [16]

      CHEN Jia-Wei, ZHAO Ru, ZHOU Ren-Xian. Chinese J. Inorg. Chem., 2018, 34(12):2135-2142  doi: 10.11862/CJIC.2018.276
       

    17. [17]

      Wang Q Y, Liu Z L, Wu J R. Adv. Mater. Res., 2014, 1033-1034:90-94  doi: 10.4028/www.scientific.net/AMR.1033-1034.90

    18. [18]

      Lin Q C, Hao J M, Li J H, et al. Catal. Today., 2007, 126(3/4):351-358

    19. [19]

      Valverde J L, De-lucas A, Sánchez P, et al. Appl. Catal. B:Environ., 2003, 43(1):43-56  doi: 10.1016/S0926-3373(02)00274-6

    20. [20]

      Li W B, Sirilumpen M, Yang R T. Appl. Catal. B:Environ., 1997, 11(3/4):347-363
       

    21. [21]

      ZHOU Hao, SU Ya-Xin, DENG Wen-Yi, et al. Environ. Sci. Technol., 2016, 39(1):94-100
       

    22. [22]

      Xu L, Shi C, Chen B B, et al. Microporous Mesoporous Mater., 2016, 236:211-217  doi: 10.1016/j.micromeso.2016.08.042

    23. [23]

      Zhang T, Liu J, Wang D X, et al. Appl. Catal. B:Environ., 2014, 148-149:520-531  doi: 10.1016/j.apcatb.2013.11.006

    24. [24]

      Martínez-hernández A, Fuentes G A, Gómez S A. Appl. Catal. B:Environ., 2015, 166-167:465-474  doi: 10.1016/j.apcatb.2014.11.059

    25. [25]

      LI Biao, ZHANG Hong-Yan, ZHENG Jia-Jun, et al. Chinese J. Inorg. Chem., 2015, 31(8):1563-1570
       

    26. [26]

      Zhou H, Su Y X, Liao W Y, et al. Fuel., 2016, 182:352-360  doi: 10.1016/j.fuel.2016.05.116

    27. [27]

      Yan Q H, Chen S N, Qiu L, et al. Dalton. Trans., 2018, 47(9):2992-3004  doi: 10.1039/C7DT02000G

    28. [28]

      LIU Xin, SU Ya-Xin, DONG Shi-Lin, et al. J. Fuel Chem. Technol., 2018, 46(6):743-753  doi: 10.3969/j.issn.0253-2409.2018.06.013

    29. [29]

      Kwak J H, Tonkyn R G, Kim D H, et al. J. Catal., 2010, 275(2):187-190  doi: 10.1016/j.jcat.2010.07.031

    30. [30]

      WANG Qi-Ying, WEN Yan-Bing, DONG Xin-Fa, et al. J. Chem. Eng. Chinese Univ., 2006, 4(20):598-603
       

    31. [31]

      Yang X, Su Y X, Qian W Y, et al. J. Fuel Chem. Technol., 2017, 45(11):1365-1375  doi: 10.1016/S1872-5813(17)30061-0

    32. [32]

      Dong S L, Su Y X, Liu X, et al. J. Fuel Chem. Technol., 2018, 46(10):1231-1239  doi: 10.1016/S1872-5813(18)30051-3

    33. [33]

      Hatipolu M, Helvac C, Chamberlain S C, et al. J. Afr. Earth Sci., 2010, 57(5):525-541  doi: 10.1016/j.jafrearsci.2010.01.002

    34. [34]

      SHEN Bo-Xiong, MA Hong-Qing, YANG Xiao-Yan, et al. J. Fuel Chem. Technol., 2012, 40(5):615-620  doi: 10.3969/j.issn.0253-2409.2012.05.017

    35. [35]

      Chmielarz L, Piwowarska Z, Kutrowsk I P, et al. Appl. Clay. Sci., 2011, 53(2):164-173
       

    36. [36]

      Kumar M S, Schwidder M, Grünert W, et al. J. Catal., 2004, 227(2):384-397  doi: 10.1016/j.jcat.2004.08.003

    37. [37]

      Pérez-ramirez J, Kumar M S, Brückner A. J. Catal., 2004, 223(1):13-27
       

    38. [38]

      Janas J, Gurgul J, Socha R P, et al. Appl. Catal. B:Environ., 2009, 91(1/2):217-224

    39. [39]

      Yashnik S A, Ismagilov Z R, Anufrienko V F. Catal. Today, 2005, 110(3/4):310-322
       

    40. [40]

      YE Qing, YAN Li-Na, HUO Fei-Fei, et al. Chinese J. Inorg. Chem., 2012, 28(1):103-112
       

    41. [41]

      Chen H Y, Sachtler W M H. Catal. Today., 1998, 42(1/2):73-83
       

    42. [42]

      Delahay G, Coq B, Broussous L. Appl. Catal. B:Environ., 1997, 12(1):49-59  doi: 10.1016/S0926-3373(97)80067-7

    43. [43]

      Yang R T, Tharappiwattananon N, Long R Q. Appl. Catal. B:Environ., 1998, 19(3/4):289-304
       

    44. [44]

      Yuan M H, Deng W Y, Dong S L, et al. Chem. Eng. J., 2018, 353:839-848  doi: 10.1016/j.cej.2018.07.201

    45. [45]

      Walker A P. Catal. Today, 1995, 26:107-128  doi: 10.1016/0920-5861(95)00133-Z

    46. [46]

      Boroń P, Chmielarz L, Dzwigaj S, et al. Appl. Catal. B:Environ., 2015, 168-169:377-384  doi: 10.1016/j.apcatb.2014.12.052

    47. [47]

      Datka J, Turek A M, Jehng J M, et al. J. Catal., 1992, 135(1):186-199
       

    48. [48]

      Barzetti T, Selli E, Moscotti D, et al. J. Chem. Soc., Faraday Trans., 1996, 92(8):1401-1407  doi: 10.1039/ft9969201401

    49. [49]

      Long R Q, Yang R T. J. Catal., 1999, 186(2):254-268
       

    50. [50]

      Yang R T, Li W B. J. Catal., 1995, 155(2):414-417  doi: 10.1006/jcat.1995.1223

    51. [51]

      Li J H, Zhu Y Q, Ke R, et al. Appl. Catal. B:Environ., 2008, 80(3/4):202-213

    52. [52]

      Mendioroz S, Martín-Rojo A B, Rivera F, et al. Appl. Catal. B:Environ., 2006, 64:161-170  doi: 10.1016/j.apcatb.2005.10.023

  • 加载中
    1. [1]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    2. [2]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    3. [3]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-0. doi: 10.3866/PKU.WHXB202408015

    4. [4]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    10. [10]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    11. [11]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    12. [12]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    13. [13]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    14. [14]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    15. [15]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    19. [19]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    20. [20]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

Metrics
  • PDF Downloads(5)
  • Abstract views(689)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return