Citation: CAO Han, PAN Hai-Hua, TANG Rui-Kang. Materials Enhanced by Biomimetic Mineralization[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(11): 1957-1973. doi: 10.11862/CJIC.2019.250 shu

Materials Enhanced by Biomimetic Mineralization

Figures(8)

  • In recent years, with the development of material science, organic-inorganic composites with excellent mechanical properties and specific functions have become a hot research topic. The natural processes of biomineralization have produced widely distributed biominerals with a wide variety of unique composite materials and excellent mechanical properties, such as tooth, bone, pearl, shellfish, sea urchin thorn, marine bloodworm jaw. The characteristics of biominerals structure and mineralization mechanisms in natural composite materials provide a theoretical basis for biomimetic design and synthesis of materials with specific structure, specific function and excellent mechanical properties. By learning the principle of biomineralization, biomimetic mineralization is a crystallization process, by which an organic matrix regulates the nucleation of inorganic minerals, and grows into organic-inorganic hybrid minerals with ordered structures and advanced functions. This paper reviews the natural reinforced composite materials with high hardness and high toughness fabricated by natural biomineralization process, and a number of artificial organic-inorganic reinforced composite materials inspired by the reinforcing and toughening mechanisms in biomineralization.
  • 加载中
    1. [1]

      CUI Fu-Zhai. Biomineralization. Beijing:Tsinghua University Press, 2007.

    2. [2]

      Jodaikin A, Weiner S, Talmon Y, et al. Int. J. Biol. Macromol., 1988, 10(6):349-352  doi: 10.1016/0141-8130(88)90027-X

    3. [3]

      Fincham A G, Moradian-Oldak J, Diekwisch T G H, et al. J. Struct. Biol., 1995, 115(1):50-59  doi: 10.1006/jsbi.1995.1029

    4. [4]

      Mann S. Biomimetic Materials Chemistry. Canada:Wiley-VCH, 1995.

    5. [5]

      Weiner S, Wagner H D. Annu. Rev. Mater. Sci., 1998, 28(1):271-298
       

    6. [6]

      Limeback H. Current Opinion in Dentistry, 1991, 1(6):826-835
       

    7. [7]

      Pyun J, Matyjaszewski K. Chem. Mater., 2001, 13(10):3436-3448  doi: 10.1021/cm011065j

    8. [8]

      Lowenstam H A, Weiner S. On Biomineralization. New York:Oxford University Press, 1989.

    9. [9]

      Aizenberg J, Tkachenko A, Weiner S, et al. Nature, 2001, 412(6849):819-822  doi: 10.1038/35090573

    10. [10]

      Addadi L, Weiner S. Nature, 2001, 411(6839):753-755  doi: 10.1038/35081227

    11. [11]

      Kamat S, Su X, Ballarini R, et al. Nature, 2000, 405(6790):1036-1040  doi: 10.1038/35016535

    12. [12]

      Mann S. Nature, 1993, 365(6446):499-505  doi: 10.1038/365499a0

    13. [13]

      Cha J N, Shimizu K, Zhou Y, et al. Proc. Natl. Acad. Sci. U.S.A., 1999, 96(2):361-365  doi: 10.1073/pnas.96.2.361

    14. [14]

      Landis W J. Connective Tissue Research, 1996, 34(4):239-246  doi: 10.3109/03008209609005267

    15. [15]

      Lowenstam H A. Science, 1967, 156(3780):1373-1375  doi: 10.1126/science.156.3780.1373

    16. [16]

      Currey J D. J. Exp. Biol., 1999, 202(23):3285-3294

    17. [17]

      Waters N E, Vincent J F V, Currey J D. The Mechanical Properties of Biological Materials. London:Cambridge Univ. Press, 1980, 34:99-136

    18. [18]

      Currey J D. Science, 2005, 309(5732):253-254  doi: 10.1126/science.1113954

    19. [19]

      Söllner C, Burghammer M, Busch-Nentwich E, et al. Science, 2003, 302(5643):282-286  doi: 10.1126/science.1088443

    20. [20]

      Lichtenegger H C, Schöberl T, Bartl M H, et al. Science, 2002, 298(5592):389-392  doi: 10.1126/science.1075433

    21. [21]

      Weiner S, Dove P M. Rev. Mineral. Geochem., 2003, 54(1):1-29  doi: 10.2113/0540001

    22. [22]

      Addadi L, Raz S, Weiner S. Adv. Mater., 2003, 15(12):959-970  doi: 10.1002/adma.200300381

    23. [23]

      Espinosa H D, Rim J E, Barthelat F, et al. Prog. Mater Sci., 2009, 54(8):1059-1100  doi: 10.1016/j.pmatsci.2009.05.001

    24. [24]

      Kohn A J. Encyclopedia of Evolution:Molluscs. New York:Oxford University Press, 2002.

    25. [25]

      Addadi L, Weiner S. Nature, 1997, 389(6654):912-913  doi: 10.1038/40010

    26. [26]

      Weiss I M, Tuross N, Addadi L, et al. J. Exp. Zool., 2002, 293(5):478-491  doi: 10.1002/jez.90004

    27. [27]

      Currey J D, Taylor J D. J. Zool., 1974, 173(3):395-406
       

    28. [28]

      Lin A Y M, Chen P Y, Meyers M A. Acta Biomater., 2008, 4(1):131-138  doi: 10.1016/j.actbio.2007.05.005

    29. [29]

      Gilbert P U P A, Abrecht M, Frazer B H. Rev. Mineral. Geochem., 2005, 59(1):157-185  doi: 10.2138/rmg.2005.59.7

    30. [30]

      Huang W, Restrepo D, Jung J Y, et al. Adv. Mater., 2019, https://doi.org/10.1002/adma.201901561

    31. [31]

      Gregoire C, Duchateau G, Florkin M. Annales de l'Institut Océanographique, 1955, 31:1-36

    32. [32]

      Schäffer T E, Ionescu-Zanetti C, Proksch R, et al. Chem. Mater., 1997, 9(8):1731-1740  doi: 10.1021/cm960429i

    33. [33]

      Meyers M A, Chen P Y, Lin A Y M, et al. Prog. Mater. Sci., 2008, 53(1):1-206  doi: 10.1016/j.pmatsci.2007.05.002

    34. [34]

      Wang R Z, Suo Z, Evans A G, et al. J. Mater. Res., 2011, 16(9):2485-2493
       

    35. [35]

      Evans A G, Suo Z, Wang R Z, et al. J. Mater. Res., 2011, 16(9):2475-2484
       

    36. [36]

      Li X, Chang W C, Chao Y J, et al. Nano Lett., 2004, 4(4):613-617  doi: 10.1021/nl049962k

    37. [37]

      Smith B L, Schffer T E, Viani M, et al. Nature, 1999, 399(6738):761-763  doi: 10.1038/21607

    38. [38]

      Song F, Soh A K, Bai Y L. Biomaterials, 2003, 24(20):3623-3631  doi: 10.1016/S0142-9612(03)00215-1

    39. [39]

      Watabe N. J. Ultrastruct. Res., 1965, 12(3):351-370  doi: 10.1016/S0022-5320(65)80104-6

    40. [40]

      Weiner S, Traub W, Miller A, et al. Phil. Trans. R. Soc. Lond. B, 1984, 304(1121):425-434  doi: 10.1098/rstb.1984.0036

    41. [41]

      Carpenter W. Report of the British Association for the Advancement of Science. 17th Meeting. 1847: 93-134

    42. [42]

      Schmidt W. J. Die Bausteine des Tierkorpers in Polarisiertem Lichte. Bonn:Verlag von Friedrich Cohen, 1924.

    43. [43]

      Beniash E, Aizenberg J, Addadi L, et al. Proceedings of the Royal Society B:Biological Sciences, 1997, 264(1380):461-465  doi: 10.1098/rspb.1997.0066

    44. [44]

      Märkel K, Röser U, Mackenstedt U, et al. Zoomorphology, 1986, 106(4):232-243  doi: 10.1007/BF00312044

    45. [45]

      Beniash E, Addadi L, Weiner S. J. Struct. Biol., 1999, 125(1):50-62  doi: 10.1006/jsbi.1998.4081

    46. [46]

      Wilt F H. Zool. Sci., 2002, 19:253-261  doi: 10.2108/zsj.19.253

    47. [47]

      Aizenberg J, Weiner S, Addadi L. Connective Tissue Research, 2003, 44(1):20-25  doi: 10.1080/03008200390152034

    48. [48]

      Aizenberg J, Ilan M, Weiner S, et al. Connective Tissue Research, 1996, 34(4):255-261  doi: 10.3109/03008209609005269

    49. [49]

      Weiner S, Price P A. Calcified Tissue International, 1986, 39(6):365-375  doi: 10.1007/BF02555173

    50. [50]

      Moradian-Oldak J, Weiner S, Addadi L, et al. Connective Tissue Research, 1991, 25(3/4):219-228
       

    51. [51]

      Stumm W. Chemistry of the Solid-Water Interface. New York:John Wiley & Sons Inc, 1992.

    52. [52]

      Waychunas G A. Rev. Mineral. Geochem., 2001, 44(1):105-166  doi: 10.2138/rmg.2001.44.04

    53. [53]

      Mai C, Militz H. Wood Sci. Technol., 2004, 37(5):339-348  doi: 10.1007/s00226-003-0205-5

    54. [54]

      Aizenberg J, Weaver J C, Thanawala M S, et al. Science, 2005, 309(5732):275-278  doi: 10.1126/science.1112255

    55. [55]

      Moreno M D, Ma K, Schoenung J, et al. Acta Biomater., 2015, 25:313-324  doi: 10.1016/j.actbio.2015.07.028

    56. [56]

      Shimizu K, Cha J, Stucky G D, et al. Proc. Natl. Acad. Sci. U.S.A., 1998, 95(11):6234-6238  doi: 10.1073/pnas.95.11.6234

    57. [57]

      Brunner E, Richthammer P, Ehrlich H, et al. Angew. Chem. Int. Ed., 2009, 48(51):9724-9727  doi: 10.1002/anie.200905028

    58. [58]

      Ehrlich H. Int. Geol. Rev., 2010, 52(7/8):661-699
       

    59. [59]

      Ehrlich H, Janussen D, Simon P, et al. J. Nanomater., 2008, 2008:670235

    60. [60]

      Woesz A, Weaver J C, Kazanci M, et al. J. Mater. Res., 2006, 21(8):2068-2078  doi: 10.1557/jmr.2006.0251

    61. [61]

      Fratzl P, Gupta H S, Fischer F D, et al. Adv. Mater., 2007, 19(18):2657-2661  doi: 10.1002/adma.200602394

    62. [62]

      Lin A, Meyers M A. Mater. Sci. Eng. A, 2005, 390(1):27-41

    63. [63]

      Mustoe G, Acosta M. Geosci., 2016, 6(2):25  doi: 10.3390/geosciences6020025

    64. [64]

      Hillis W E, Silva D. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 1979, 33(2):47-53

    65. [65]

      Bazylinski D A, Moskowitz B M. Rev. Mineral., 1997, 35:181-223

    66. [66]

      Konhauser K O. FEMS Microbiol. Rev., 1997, 20(3/4):315-326
       

    67. [67]

      Konhauser K O. Earth Sci. Rev., 1998, 43(3):91-121

    68. [68]

      Lowenstam H A. Biomineralization in Lower Plants and Animals. New York:Oxford University Press, 1986, 30:1-17

    69. [69]

      Bazylinski D A, Frankel R B. Rev. Mineral. Geochem., 2003, 54(1):217-247  doi: 10.2113/0540217

    70. [70]

      Kirschvink J L, Hagadorn J W. Biomineralization Weinheim, Germany:Wiley-VCH Verlag GmbH, 2000:139-149

    71. [71]

      Weaver J C, Wang Q, Miserez A, et al. Mater. Today, 2010, 13(1):42-52
       

    72. [72]

      Devouard B, Pósfai M, Hua X, et al. Am. Mineral., 1998, 83(11/12):1387-1398

    73. [73]

      Barber A H, Lu D, Pugno N M. Journal of the Royal Society Interface, 2015, 12(105):20141326  doi: 10.1098/rsif.2014.1326

    74. [74]

      Gibbs P E, Bryan G W. Journal of the Marine Biological Association of the United Kingdom, 2009, 60(1):205-214

    75. [75]

      Fong H, Sarikaya M, White S N, et al. Mater. Sci. Eng. C, 1999, 7(2):119-128  doi: 10.1016/S0928-4931(99)00133-2

    76. [76]

      Vincent J F V. Structural Biomaterials. Princeton, NJ:Princeton Univ. Press, 1990.

    77. [77]

      Suresh S, Olsson M, Giannakopoulos A E, et al. Acta Mater., 1999, 47(14):3915-3926  doi: 10.1016/S1359-6454(99)00205-0

    78. [78]

      Suresh S. Science, 2001, 292(5526):2447-2451  doi: 10.1126/science.1059716

    79. [79]

      Chujo Y. Curr. Opin. Solid State Mater. Sci., 1996, 1(6):806-811  doi: 10.1016/S1359-0286(96)80105-7

    80. [80]

      Schmidt H. J. Non-cryst. Solids., 1985, 73(1/2/3):681-691

    81. [81]

      Mark J E, Lee C Y C, Bianconi P A. Hybrid Organic-Inorganic Composite. Washington, DC:American Chemical Society, 1995.

    82. [82]

      Novak B M. Adv. Mater., 1993, 5(6):422-433  doi: 10.1002/adma.19930050603

    83. [83]

      Huang H H, Orler B, Wilkes G L. Macromolecules, 1987, 20(6):1322-1330  doi: 10.1021/ma00172a026

    84. [84]

      Wilkes G L, Wen J. Polymeric Materials Encyclopedia: Vol. 6. Salamone J C. Ed., New York: CRC Press, 1996.

    85. [85]

      Allcock H R. Chemical Processing of Advanced Materials. New York:Wiley & Son, 1992.

    86. [86]

      Scobbo Jr J J. J. Appl. Polym. Sci., 1993, 47(12):2169-2175  doi: 10.1002/app.1993.070471211

    87. [87]

      Menon N, Blum F D, Dharani L R. J. Appl. Polym. Sci., 1994, 54(1):113-123  doi: 10.1002/app.1994.070540112

    88. [88]

      Hsu Y G, Lin F J. J. Appl. Polym. Sci., 2000, 75(2):275-283  doi: 10.1002/(SICI)1097-4628(20000110)75:2<275::AID-APP10>3.0.CO;2-I

    89. [89]

      LeGeros R Z, LeGeros J P. An Introduction to Bioceramics (2nd Ed). London:Word Scientific, 1999:139-180

    90. [90]

      Hench L L. Bioceramics-Applications of Ceramic and Glass Materials in Medicine. Switzerland:Trans Tech Publication, 1999:37-64

    91. [91]

      Seal B L, Otero T C, Panitch A. Mater. Sci. Eng. R, 2001, 34(4):147-230
       

    92. [92]

      Keaveny T M, Hayes W C. Bone Growth. Boca Raton, FL:CRC Press, 1993:285-344

    93. [93]

      Giesen E B W, Ding M, Dalstra M, et al. J. Biomech., 2001, 34(6):799-803  doi: 10.1016/S0021-9290(01)00030-6

    94. [94]

      Yeni Y N, Fyhrie D P. J. Biomech., 2001, 34(12):1649-1654  doi: 10.1016/S0021-9290(01)00155-5

    95. [95]

      Hench L L, Kokubo T. Handbook of Biomaterial Properties. London:Chapman & Hall, 1998:355-363

    96. [96]

      Hench L L. An Introduction to Bioceramics (2nd Ed). London:Word Scientific, 1999.

    97. [97]

      Kokubo T. An Introduction to Bioceramics (2nd Ed). London:Word Scientific, 1999:75-88

    98. [98]

      Jones J R, Ehrenfried L M, Hench L L. Biomaterials, 2006, 27(7):964-973  doi: 10.1016/j.biomaterials.2005.07.017

    99. [99]

      Okii N, Nishimura S, Kurisu K, et al. Neurologia Medico-Chirurgica, 2001, 41(2):100-104  doi: 10.2176/nmc.41.100

    100. [100]

      Chen Y P, Dang B K, Jin C D, et al. ACS Nano, 2019, 13(1):371-376  doi: 10.1021/acsnano.8b06409

    101. [101]

      Kuo D, Nishimura T, Kajiyama S, et al. ACS Omega, 2018, 3(10):12722-12729  doi: 10.1021/acsomega.8b02014

    102. [102]

      Salvetat J P, Bonard J M, Thomson N H, et al. Appl. Phys. A, 1999, 69(3):255-260  doi: 10.1007/s003390050999

    103. [103]

      Subramoney S. Adv. Mater., 1998, 10(15):1157-1171  doi: 10.1002/(SICI)1521-4095(199810)10:15<1157::AID-ADMA1157>3.0.CO;2-N

    104. [104]

      Baughman R H, Zakhidov A A, Heer W A. Science, 2002, 297(5582):787-792  doi: 10.1126/science.1060928

    105. [105]

      Thostenson E T, Ren Z F, Chou T W. Compos. Sci. Technol., 2001, 61:1899-1912  doi: 10.1016/S0266-3538(01)00094-X

    106. [106]

      Safadi B, Andrews R, Grulke E A, et al. J. Appl. Polym. Sci., 2002, 84(14):2660-2669  doi: 10.1002/app.10436

    107. [107]

      Andrews R, Jacques D, Rao A M, et al. Appl. Phys. Lett., 1999, 75(9):1329-1331  doi: 10.1063/1.124683

    108. [108]

      Andrews R, Jacques D, Minot M, et al. Macromol. Mater. Eng., 2002, 287:395-403  doi: 10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO;2-S

    109. [109]

      Zhang H, Wang Z G, Zhang Z N. Adv. Mater., 2007, 19(5):698-704  doi: 10.1002/adma.200600442

    110. [110]

      Zhang H, Wu J, Zhang J, et al. Macromolecules, 2005, 38:8272-8277  doi: 10.1021/ma0505676

    111. [111]

      Rai U S, Singh R K. Mater. Lett., 2004, 58(1):235-240
       

    112. [112]

      Yang K, Yang Q, Li G X, et al. Mater. Lett., 2006, 60(6):805-809  doi: 10.1016/j.matlet.2005.10.020

    113. [113]

      Neville A M. Properties of Concrete. London:Sir Isaac Pitman, 1963.

    114. [114]

      Picker A, Nicoleau L, Burghard Z, et al. Sci. Adv., 2017, 3(11):e1701216  doi: 10.1126/sciadv.1701216

    115. [115]

      Fratzl P, Kolednik O, Fischer F D, et al. Chem. Soc. Rev., 2016, 45(2):252-267  doi: 10.1039/C5CS00598A

    116. [116]

      ZHAO Min, ZHENG Qi-Xin, GUO Xiao-Dong, et al. Chinese Journal of Biomedical Engineering, 2005, 24(2):145-149  doi: 10.3969/j.issn.0258-8021.2005.02.004

    117. [117]

      Munch E, Launey M E, Alsem D H, et al. Science, 2008, 322(5907):1516-1520  doi: 10.1126/science.1164865

    118. [118]

      Chen S M, Gao H L, Sun X H, et al. Matter, 2019, 1(2):412-427  doi: 10.1016/j.matt.2019.03.012

    119. [119]

      Yin Z, Hannard F, Barthelat F. Science, 2019, 364(6447):1260-1263  doi: 10.1126/science.aaw8988

  • 加载中
    1. [1]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    2. [2]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    7. [7]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    8. [8]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    9. [9]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    12. [12]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    13. [13]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    16. [16]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    20. [20]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

Metrics
  • PDF Downloads(128)
  • Abstract views(3338)
  • HTML views(1004)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return