Coumarin-Based Turn-on Fluorescent Probe for Copper(Ⅱ) Detection and Its Application in Cell Imaging
- Corresponding author: ZHANG Chang-Li, carbon314@163.com
Citation: ZHANG Chang-Li, ZHANG Hong, HE Feng-Yun, YANG Hui, LIU Shao-Xian, LIU Min-Sheng. Coumarin-Based Turn-on Fluorescent Probe for Copper(Ⅱ) Detection and Its Application in Cell Imaging[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(10): 1869-1876. doi: 10.11862/CJIC.2019.207
Martínez-Máez R, Sancenón F. Chem. Rev., 2003, 103:4419-4476
doi: 10.1021/cr010421e
Thomas S W, Joly G D, Swager T M. Chem. Rev., 2007, 107:1339-1386
doi: 10.1021/cr0501339
Kim S K, Lee D H, Hong J I, et al. Acc. Chem. Res., 2009, 42:23-31
doi: 10.1021/ar800003f
Xu Z C, Chen X Q, Kim H N, et al. Chem. Soc. Rev., 2010, 39:127-137
doi: 10.1039/B907368J
Zhou Y, Xu Z C, Yoon J. Chem. Soc. Rev., 2011, 40:2222-2235
doi: 10.1039/c0cs00169d
Vendrell M, Zhai D T, Er J C, et al. Chem. Rev., 2012, 112:4391-4420
doi: 10.1021/cr200355j
Liu Z P, He W J, Guo Z J. Chem. Soc. Rev., 2013, 42:1568-1600
doi: 10.1039/c2cs35363f
Prohaska J R, Gybina A A. J. Nutr., 2004, 134:1003-1006
doi: 10.1093/jn/134.5.1003
Davis A V, O'Halloran T V. Nat. Chem. Biol., 2008, 4:148-151
doi: 10.1038/nchembio0308-148
Que E L, Domaille D W, Chang C J. Chem. Rev., 2008, 108:1517-1549
doi: 10.1021/cr078203u
Thiele D J, Gitlin J D. Nat. Chem. Biol., 2008, 4:145-147
doi: 10.1038/nchembio0308-145
Robinson N J, Winge D R. Annu. Rev. Biochem., 2010, 79:537-562
doi: 10.1146/annurev-biochem-030409-143539
Cuajungco M P, Lees G J. Neurobiol. Dis., 1997, 4:137-169
doi: 10.1006/nbdi.1997.0163
Bush A I. Curr. Opin. Chem. Biol., 2000, 4:184-191
doi: 10.1016/S1367-5931(99)00073-3
Valentine J S, Hart P J. Proc. Natl. Acad. Sci. USA, 2003, 100:3617-3622
doi: 10.1073/pnas.0730423100
Brown D R, Kozlowski H. Dalton Trans., 2004, 13:1907-1917
Millhauser G L. Acc. Chem. Res., 2004, 37:79-85
doi: 10.1021/ar0301678
Frederickson C J, Koh J Y, Bush A I. Nat. Rev. Neurosci., 2005, 6:449-462
doi: 10.1038/nrn1671
Gaggelli E, Kozlowski H, Valensin D, et al. Chem. Rev., 2006, 106:1995-2044
doi: 10.1021/cr040410w
Lutsenko S, Gupta A, Burkhead J L, et al. Arch. Biochem. Biophys., 2008, 476:22-32
doi: 10.1016/j.abb.2008.05.005
Kaler S G. Nat. Rev. Neurol., 2011, 7:15-29
doi: 10.1038/nrneurol.2010.180
Domaille D W, Que E L, Chang C J. Nat. Chem. Biol., 2008, 4:168-175
doi: 10.1038/nchembio.69
World Health Oganization. Guidelines for Drinking-Water Quality. 4th Ed. Geneva:World Health Organization, 2017:341
Wang X B, Ma X Y, Yang Z, et al. Chem. Commun., 2013, 49:11263-11265
doi: 10.1039/c3cc46585c
Kang D E, Lim C S, Kim J Y, et al. Anal. Chem., 2014, 86:5353-5359
doi: 10.1021/ac500329k
Sharma N, Reja S I, Bhalla V, et al. Dalton Trans., 2014, 43:15929-15936
doi: 10.1039/C4DT01676A
Han Y Y, Ding C Q, Zhou J, et al. Anal. Chem., 2015, 87:5333-5339
doi: 10.1021/acs.analchem.5b00628
Kaur M, Ahn Y H, Choi K, et al. Org. Biomol. Chem., 2015, 13:7149-7153
doi: 10.1039/C5OB00907C
Li S, Zhang D, Xie X Y, et al. Sens. Actuators B, 2016, 224:661-667
doi: 10.1016/j.snb.2015.10.086
Jiang H, Li Z J, Kang Y F, et al. Sens. Actuators B, 2017, 242:112-117
doi: 10.1016/j.snb.2016.11.033
Li Y Y, Sun M T, Zhang K, et al. Sens. Actuators B, 2017, 243:36-42
doi: 10.1016/j.snb.2016.11.118
Liu L L, Dan F J, Liu W J, et al. Sens. Actuators B, 2017, 247:445-450
doi: 10.1016/j.snb.2017.03.069
Yoon J W, Chang M J, Hong S, et al. Tetrahedron Lett., 2017, 58:3887-3893
doi: 10.1016/j.tetlet.2017.08.071
FAN Fang-Lu, JING Jin-Qiu, CHEN Xue-Mei. Chinese J. Inorg. Chem., 2015, 31(3):548-554
Lin W Y, Yuan L, Tan W, et al. Chem. Eur. J., 2009, 15:1030-1035
doi: 10.1002/chem.200801501
Li N, Xiang Y, Tong A. Chem. Commun., 2010, 46:3363-3365
doi: 10.1039/c001408g
Cheng J H, Zhang Y H, Ma X F, et al. Chem. Commun., 2013, 49:11791-11793
doi: 10.1039/c3cc47137c
Huang L Y, Gu B, Su W, et al. RSC Adv., 2015, 5:76296-76301
doi: 10.1039/C5RA14443D
Hu X X, Zheng X L, Fan X X, et al. Sens. Actuators B, 2016, 227:191-197
doi: 10.1016/j.snb.2015.12.037
Li D X, Sun X, Huang J M, et al. Dyes Pigm., 2016, 125:185-191
doi: 10.1016/j.dyepig.2015.10.016
Sun J, Wang B, Zhao X, et al. Anal. Chem., 2016, 88:1355-1361
doi: 10.1021/acs.analchem.5b03848
Tan W B, Leng T H, Lai G Q, et al. J. Photochem. Photobiol. A, 2016, 324:81-86
doi: 10.1016/j.jphotochem.2016.03.014
Tang J, Ma S G, Zhang D, et al. Sens. Actuators B, 2016, 236:109-115
doi: 10.1016/j.snb.2016.05.144
Wang B G, Cui X Y, Zhang Z Q, et al. Org. Biomol. Chem., 2016, 14:6720-6728
doi: 10.1039/C6OB00894A
Zhu D J, Luo Y H, Shuai L, et al. Tetrahedron Lett., 2016, 57:5326-5329
doi: 10.1016/j.tetlet.2016.10.056
Zheng X L, Ji R X, Cao X Q, et al. Anal. Chim. Acta, 2017, 978:48-54
doi: 10.1016/j.aca.2017.04.048
Gu B, Huang L Y, Xu Z F, et al. Sens. Actuators B, 2018, 273:118-125
doi: 10.1016/j.snb.2018.06.032
Sirilaksanapong S, Sukwattanasinitt M, Rashatasakhon P. Chem. Commun., 2012, 48:293-295
doi: 10.1039/C1CC16148B
Zhao C C, Feng P, Cao J, et al. Org. Biomol. Chem., 2012, 10:3104-3109
doi: 10.1039/c2ob06980f
Yang C Y, Chen Y, Wu K, et al. Anal. Methods, 2015, 7:3327-3330
doi: 10.1039/C5AY00224A
Tang L J, He P, Zhong K L, et al. Spectrochim. Acta Part A, 2016, 169:246-251
doi: 10.1016/j.saa.2016.06.045
Zhu D J, Luo Y H, Yan X W, et al. RSC Adv., 2016, 6:87110-87114
doi: 10.1039/C6RA18669F
Zhang H T, Feng L, Jiang Y, et al. Biosens. Bioelectron., 2017, 94:24-29
doi: 10.1016/j.bios.2017.02.037
Lixian Fu , Yiyun Tan , Yue Ding , Weixia Qing , Yong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Zhixue Liu , Haiqi Chen , Lijuan Guo , Xinyao Sun , Zhi-Yuan Zhang , Junyi Chen , Ming Dong , Chunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666
Jianqiu Li , Yi Zhang , Songen Liu , Jie Niu , Rong Zhang , Yong Chen , Yu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Wenzhong Zhang , Zirui Yan , Lingcheng Chen , Yi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
Lingna Wang , Chenxin Tian , Ruobin Dai , Zhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
Excitation wavelengths are 460 nm for Cou-P and 400 nm for adding 5 eq. Cu2+, respectively
Inset: (a) titration profile based on the absorption ratio at 454 and 470 nm, A454/A470; (b) plot of A414/A474 as a function of time upon addition of Cu(NO3)2
Inset: (a) titration profile based on the emission intensity at 497 nm, I497, λex=460 nm; (b) time-dependent fluorescence at 403 nm, λem=510 nm, slit width=dex=dem=4.0 nm, PMT voltage=950 V
Final concentration for Cd2+, Zn2+, Co2+, Cu2+, Fe2+, Fe3+, Hg2+, Mn2+, Ni2+ and Pd2+ is 20 μmol·L-1, for Na+, K+, Ca2+ and Mg2+ is 10 mmol·L-1
Band path: 420~520 nm, λex=405 nm