Tri-hydroxyl Corrole and Its Gallium(Ⅲ) Complex: DNA-Binding, Photocleavage and in Vitro Photodynamic Antitumor Activities
- Corresponding author: SI Li-Ping, chhyliu@scut.edu.cn LIU Hai-Yang, lipingsi@fosu.edu.cn
Citation: CHEN Xuan, WANG Hua-Hua, Waseem Akram, SUN Yan-Mei, LIAO Yu-Hui, SI Li-Ping, LIU Hai-Yang, Chi-Kwong Chang. Tri-hydroxyl Corrole and Its Gallium(Ⅲ) Complex: DNA-Binding, Photocleavage and in Vitro Photodynamic Antitumor Activities[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(9): 1687-1697. doi: 10.11862/CJIC.2019.201
Ethirajan M, Chen Y H, Joshi P, et al. Chem. Soc. Rev., 2011, 40(1):340-362
doi: 10.1039/B915149B
Ferreira D P, Conceição D S, Calhelha R C, et al. Carbohydr. Polym., 2016, 151:160-171
doi: 10.1016/j.carbpol.2016.05.060
Zhu M L, Zhang J L, Zhou Y B, et al. Inorg. Chem., 2018, 57(18):11537-11542
doi: 10.1021/acs.inorgchem.8b01581
Josefsen L B, Boyle R W. Theranostics, 2012, 2(9):916-966
doi: 10.7150/thno.4571
Sutedja T, Baas P, Stewart F, et al. Eur. J. Cancer, 1992, 28(8/9):1370-1373
Nathan T R, Whitelaw D E, Chang S C, et al. The Journal of Urology, 2002, 168(4):1427-1432
Chang S C, Buonaccorsi G A, MacRobert A J, et al. Prostate, 1999, 32(2):89-98
Hsi R A, Kapatkin A, Strandberg J, et al. Clin. Cancer Res., 2001, 7(3):651-660
Kadish K M, Smith K M, Guilard R. The Porphyrin Handbook:Vol.33. San Diego:Academic Press, 2000:201-232
Gryko D T, Fox J P, Goldberg D P. J. Porphyrins Phthaloc-yanines, 2004, 8(9):1091-1105
doi: 10.1142/S1088424604000465
Aviv-Harel I, Gross Z. Chem. Eur. J., 2009, 15(34):8382-8394
doi: 10.1002/chem.200900920
Driggers E M, Hale S P, Lee J B, et al. Nat. Rev. Drug Discovery, 2008, 7:608-624
doi: 10.1038/nrd2590
Chang C K, Kong P W, Liu H Y, et al. Proc. SPIE, 2006, 6139:613915
doi: 10.1117/12.646328
Hwang J Y, Lubow D J, Chu D, et al. J. Controlled Release, 2012, 163(3):368-373
doi: 10.1016/j.jconrel.2012.09.015
Zhang Z, Wang H H, Yu H J, et al. Dalton Trans., 2017, 46(29):9481-9490
doi: 10.1039/C7DT00992E
Teo R D, Hwang J Y, Termini J, et al. Chem. Rev., 2017, 117(4):2711-2729
doi: 10.1021/acs.chemrev.6b00400
Zhang Z, Wen J Y, Lv B B, et al. Appl. Organomet. Chem., 2016, 30(3):132-139
doi: 10.1002/aoc.3408
Huang J T, Wang X L, Zhang Y, et al. Transition Met. Chem., 2013, 38(3):283-289
doi: 10.1007/s11243-013-9689-5
Zhang Y, Wen J Y, Mahmood M H, et al. Luminescence, 2015, 30(7):1045-1054
doi: 10.1002/bio.2857
Zhang Y, Wang Q, Wen J Y, et al. Chin. J. Chem., 2013, 31(10):1321-1328
doi: 10.1002/cjoc.201300488
Zhang Y, Wen J Y, Wang X L, et al. Appl. Organomet. Chem., 2014, 28(7):559-566
doi: 10.1002/aoc.3163
Liang Z H, Liu H Y, Zhou R, et al. J. Membr. Biol., 2016, 249(4):419-428
doi: 10.1007/s00232-016-9879-0
Wang J M, Li Y, Yuan H Q, et al. Appl. Organomet. Chem., 2016, 31(3):e3571
Liang Z H, Liu H Y, Jiang G B, et al. Chin. J. Chem., 2016, 34(10):997-1005
doi: 10.1002/cjoc.201600482
Wolfe A, Shimer G H, Meehan T. Biochemistry, 1987, 26(20):6392-6396
doi: 10.1021/bi00394a013
Lakowicz J R, Weber G. Biochemistry, 1973, 12(21):4161-4170
doi: 10.1021/bi00745a020
Cohen G, Eisenberg H. Biopolymers, 1969, 8(1):45-55
doi: 10.1002/bip.1969.360080105
Wei D G, Wilson W D, Neidle S. J. Am. Chem. Soc., 2013, 135(4):1369-1377
doi: 10.1021/ja308952y
Pasternack R F, Gibbs E J, Villafranca J J. Biochemistry, 1983, 22(23):5409-5417
doi: 10.1021/bi00292a024
Zhao P, Xu L C, Huang J W, et al. Spectrochim. Acta Part A, 2008, 71(4):1216-1223
doi: 10.1016/j.saa.2008.03.031
Olmsted J, Kearns D R. Biochemistry, 1977, 16(16):3647-3654
doi: 10.1021/bi00635a022
Nordén B, Tjerneld F. Biopolymers, 1982, 21(9):1713-1734
doi: 10.1002/bip.360210904
Satyanarayana S, Dabrowiak J C, Chaires J B. Biochemistry, 1993, 32(10):2573-2584
doi: 10.1021/bi00061a015
Wang Y G, Zhang Z, Wang H, et al. Bioorg. Chem., 2016, 67:57-63
doi: 10.1016/j.bioorg.2016.05.007
Stewart M J, Watson I D. Br. J. Clin. Pharmacol., 1983, 16(1):3-7
doi: 10.1111/j.1365-2125.1983.tb02136.x
Hwang J Y, Lubow D J, Sims J D, et al. J. Biomed. Opt., 2012, 17(1):015003
doi: 10.1117/1.JBO.17.1.015003
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Jiaqi Huang , Renjiang Kong , Yanmei Li , Ni Yan , Yeyang Wu , Ziwen Qiu , Zhenming Lu , Xiaona Rao , Shiying Li , Hong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Yu Qin , Mingyang Huang , Chenlu Huang , Hannah L. Perry , Linhua Zhang , Dunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Jinyu Guo , Yandai Lin , Shaohua He , Yueqing Chen , Fenglu Li , Renjie Ruan , Gaoxing Pan , Hexin Nan , Jibin Song , Jin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
Xiaohong Wen , Mei Yang , Lie Li , Mingmin Huang , Wei Cui , Suping Li , Haiyan Chen , Chen Li , Qiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
Fengyun Li , Zerong Pei , Shuting Chen , Gen li , Mengyang Liu , Liqin Ding , Jingbo Liu , Feng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752
Xiaoyao Ma , Jinling Zhang , Ge Fang , He Gao , Jie Gao , Li Fu , Yuanyuan Hou , Gang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823
Qiang Li , Jiangbo Fan , Hongkai Mu , Lin Chen , Yongzhen Yang , Shiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947
Zhe Li , Ping-Zhao Liang , Li Xu , Fei-Yu Yang , Tian-Bing Ren , Lin Yuan , Xia Yin , Xiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190
An Lu , Yuhao Guo , Yi Yan , Lin Zhai , Xiangyu Wang , Weiran Cao , Zijie Li , Zhixia Zhao , Yujie Shi , Yuanjun Zhu , Xiaoyan Liu , Huining He , Zhiyu Wang , Jian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928
Ji Liu , Dongsheng He , Tianjiao Hao , Yumin Hu , Yan Zhao , Zhen Li , Chang Liu , Daquan Chen , Qiyue Wang , Xiaofei Xin , Yan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296
Wenjia Wang , Xingyue He , Xiaojie Wang , Tiantian Zhao , Osamu Muraoka , Genzoh Tanabe , Weijia Xie , Tianjiao Zhou , Lei Xing , Qingri Jin , Hulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656
Chang Liu , Tao Wu , Lijiao Deng , Xuzi Li , Xin Fu , Shuzhen Liao , Wenjie Ma , Guoqiang Zou , Hai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307
Han Han , Bi-Te Chen , Jia-Rong Ding , Jin-Ming Si , Tian-Jiao Zhou , Yi Wang , Lei Xing , Hu-Lin Jiang . A PDGFRβ-targeting nanodrill system for pancreatic fibrosis therapy. Chinese Chemical Letters, 2024, 35(10): 109583-. doi: 10.1016/j.cclet.2024.109583
Inset: plot of cDNA/|εa-εf| vs cDNA
λex: 370 nm; Inset: plot of F0/F vs ccompound
ccompound/cDNA=0, 0.1, 0.2
Lane 1~2: DNA control (irradiation or dark), lane 3: 40 μmol·L-1 corrole+DNA (dark), lane 4~8: corrole+DNA (irradiation); ccompound=20, 40, 80, 120, 160 μmol·L-1
Lane 1~2: DNA control (irradiation or dark), lane 3: corrole+DNA, lane 4: corrole+DNA+10 μmol·L-1 NaN3, lane 5: corrole+DNA+50 μmol·L-1 KI, lane 6: corrole+DNA+1000 U·mL-1 SOD
Cells were double labeled by annexin V and PI