Surface-Electronic-State-Modulated, Single-Crystalline (001) α-Fe2O3 Nanosheets with Dual Reaction Sites for Efficient Fenton-Like Catalysis
- Corresponding author: CHEN Jian-Hua, huangzaiyin@163.com HUANG Zai-Ying, jhchen@gxu.edu.cn
Citation: QIU Jiang-Yuan, XIAO Bi-Yuan, QIN Fang-Hong, ZHANG Mei-Ting, WAN Ting, LIU Jin-Ping, CHEN Jian-Hua, HUANG Zai-Ying. Surface-Electronic-State-Modulated, Single-Crystalline (001) α-Fe2O3 Nanosheets with Dual Reaction Sites for Efficient Fenton-Like Catalysis[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(9): 1665-1677. doi: 10.11862/CJIC.2019.199
Shannon M A, Bohn P W, Elimelech M, et al. Nature, 2008, 452(7185):301-310
doi: 10.1038/nature06599
Garrido-Ramírez E G, Theng B K G, Mora M L. Appl. Clay Sci., 2010, 47(3):182-192
De Laat J, Le T G. Appl. Catal. B, 2006, 66(1/2):137-146
Masarwa M, Cohen H, Meyerstein D, et al. J. Am. Chem. Soc., 1988, 110(13):4293-4297
doi: 10.1021/ja00221a031
Neyens E, Baeyens J. J. Hazard. Mater., 2003, 98(1/2/3):33-50
Haber F, Weiss J. Proc. R. Soc. London Ser. A, 1934, 147(861):332-351
doi: 10.1098/rspa.1934.0221
Bossmann S H, Oliveros E, Göb S, et al. Water Sci. Technol., 2001, 44(5):257-262
doi: 10.2166/wst.2001.0300
Bo J, Zheng J, Xiu L, et al. Chem. Eng. J., 2013, 215-216(3):969-978
Qin Y, Song F, Ai Z, et al. Environ. Sci. Technol., 2015, 49(13):7948-7956
doi: 10.1021/es506110w
Li T, Zhao Z, Wang Q, et al. Water Res., 2016, 105:479-486
doi: 10.1016/j.watres.2016.09.019
Jiang C, Garg S, Waite T D. Environ. Sci. Technol., 2015, 49(24):-
Wang Y, Zhao H, Li M, et al. Appl. Catal. B, 2014, 147:534-545
doi: 10.1016/j.apcatb.2013.09.017
Morris R V, Lauer H V, Lawson C A, et al. J. Geophys. Res:Solid Earth, 1985, 90(B4):3126-3144
doi: 10.1029/JB090iB04p03126
Hosseini S G, Ahmadi R, Ghavi A, et al. Powder Technol., 2015, 278:316-322
doi: 10.1016/j.powtec.2015.03.032
Yang X, Xu X, Xu J, et al. J. Am. Chem. Soc., 2013, 135(43):16058-16061
doi: 10.1021/ja409130c
Mahadik M A, Shinde S S, Pathan H M, et al. J. Photochem. Photobiol. B, 2014, 141:315-324
doi: 10.1016/j.jphotobiol.2014.10.014
Guo L, Chen F, Fan X, et al. Appl. Catal. B, 2010, 96(1/2):162-168
Ai Z, Lu L, Li J, et al. J. Phys. Chem. C, 2007, 111(11):4087-4093
doi: 10.1021/jp065559l
Hendriksen B L M, Ackermann M D, Van Rijn R, et al. Nat. Chem., 2010, 2(9):730
doi: 10.1038/nchem.728
Martinez U, Hansen J Ø, Lira E, et al. Phys. Rev. Lett., 2012, 109(15):155501
doi: 10.1103/PhysRevLett.109.155501
Li H, Li J, Ai Z, et al. Angew. Chem., Int. Ed, 2018, 57(1):122-138
doi: 10.1002/anie.201705628
Mao C, Cheng H, Tian H, et al. Appl. Catal. B, 2018, 228:87-96
doi: 10.1016/j.apcatb.2018.01.018
Li H, Shang J, Yang Z, et al. Environ. Sci. Technol, 2017, 51(10):5685-5694
doi: 10.1021/acs.est.7b00040
Xing M, Xu W, Dong C, et al. Chemistry, 2018, 6(4):1359-1372
Song Z, Wang B, Yu J, et al. Appl. Surf. Sci., 2017, 413:292-301
doi: 10.1016/j.apsusc.2017.04.011
Zhou X, Lan J, Liu G, et al. Angew. Chem. Int. Ed., 2012, 51(1):178-182
doi: 10.1002/anie.201105028
Niu H, Lu J, Song J J, et al. Ind. Eng. Chem. Res., 2016, 55(31):8527-8533
doi: 10.1021/acs.iecr.6b00984
De Faria D L A, Lopes F N. Vib. Spectrosc., 2007, 45(2):117-121
doi: 10.1016/j.vibspec.2007.07.003
Xu J S, Zhu Y J. ACS Appl. Mater. Interfaces, 2012, 4(9):4752
doi: 10.1021/am301123f
Nasrazadani S, Raman A. Corros. Sci., 1993, 34(8):1355-1365
doi: 10.1016/0010-938X(93)90092-U
Xu X N, Wolfus Y, Shaulov A, et al. J. Appl. Phys., 2002, 91(7):4611-4616
doi: 10.1063/1.1457544
Wu J, Mao S, Ye Z G, et al. ACS Appl. Mater. Interfaces, 2010, 2(6):1561-1564
doi: 10.1021/am1002052
Cao W, Tan O K, Pan J S, et al. Mater. Chem. Phys., 2002, 75(1):67-70
Liao A Z, Chen J B, Wang C W, et al. J. Vac. Sci. Technol., B, 2016, 34(2):1-8
Wang J, Wang C W, Li Y, et al. Thin Solid Films, 2008, 516(21):7689-7694
doi: 10.1016/j.tsf.2008.03.023
Guan M, Xiao C, Zhang J, et al. J. Am. Chem. Soc., 2013, 135(28):10411-10417
doi: 10.1021/ja402956f
Chen J, Li Y F, Sit P, et al. J. Am. Chem. Soc., 2013, 135:18774-18777
doi: 10.1021/ja410685m
Gonzalez-Olmos R, Holzer F, Kopinke F D, et al. Appl. Catal. A:General., 2011, 398:44-53
doi: 10.1016/j.apcata.2011.03.005
Dixon W T, Norman R O C. Nature, 1962, 196:891-892
doi: 10.1038/196891a0
Baltrusaitis J, Cwiertny D M, Grassian V H. Phys. Chem. Chem. Phys., 2007, 9:5542-5554
doi: 10.1039/b709167b
Grosvenor A P, Kobe B A, Mcintyre N S. Surf. Sci., 2004, 572(2):217-227
Huang X, Hou X, Jia F, et al. ACS Appl. Mater. Interfaces, 2017, 9(10):8751-8758
doi: 10.1021/acsami.6b16600
Hou X, Huang X, Jia F, et al. Environ. Sci. Technol, 2017, 51(9):5118-5126
doi: 10.1021/acs.est.6b05906
Xu Y, Lv K, Xiong Z, et al. J. Phys. Chem. C, 2007, 111(51):19024-19032
doi: 10.1021/jp076364w
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Yujuan Zhao , Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971
Shiyu Pan , Bo Cao , Deling Yuan , Tifeng Jiao , Qingrui Zhang , Shoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
(a) Overview TEM images; (c) Thickness TEM images of α-Fe2O3-x; (b) and (d) The (001) and (102) facets are marked
(a) XRD patterns; (b) FT-IR spectra; (c) Raman spectra; (d) XPS of the α-Fe2O3-x nanosheets; (e) Raman spectra; (f) Solid ultraviolet visible spectrum of the α-Fe2O3-x nanosheets
Initial RHB and H2O2 concentration were 20 mg·L-1, 50 mmol·L-1; the dosage of T-3 was 0.5 g·L-1; the initial pH was 7.0
Initial RhB and H2O2 concentration were 20 mg·L-1, 50 mmol·L-1; the dosage of T-3 was 0.5 g·L-1; the initial pH value was 7.0
Reaction condition: cRhB=20 mg·L-1, ccatalyst=0.5 g·L-1, and initial solution pH=7.0
Initial RhB, H2O2, 1, 10-phenanthroline concentration were 20 mg·L-1, 50 mmol·L-1, 0.01 mol·L-1; the dosage of T-3 was 0.5 g·L-1; the initial pH value was 7.0
Initial RhB, H2O2, NaF, and TBA concentration were 20 mg·L-1, 50, 2, 0.74 mmol·L-1; the dosage of T-3 was 0.5 g·L-1; the initial pH value was 7.0