Citation: MOU Yong-Xiao, CAO Jian-Ping, CHEN Yuan-Yuan, WEI Tao, WANG Chao-Jie. Theoretical Calculations of Interaction between Four Deoxyribonucleotides and Hydrated Uranyl Ion in Aqueous Solution[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(9): 1609-1618. doi: 10.11862/CJIC.2019.197 shu

Theoretical Calculations of Interaction between Four Deoxyribonucleotides and Hydrated Uranyl Ion in Aqueous Solution

  • Corresponding author: WANG Chao-Jie, chjwang@wmu.edu.cn
  • Received Date: 26 April 2019
    Revised Date: 10 June 2019

Figures(4)

  • The geometric structures, energetics and electronic structures of[UO2(dNMP)(H2O)3]2+ (dNMP=deoxy-nucleotide monophosphate) in aqueous phase have been studied using density functional theory (DFT) method M06-2X with RLC ECP and ECP60MWB-SEG basis sets. Solvent effects of water was simulated by the polarized continuum model. The results showed that the most stable coordination uranyl ions formed by P=O bond of the phosphate group in dNMP, except the dTMP coordination ion. The bond lengths of U=O in four coordination uranyl ions were almost the same, but the coordination bond lengths were significantly different. The deoxyadenosine monophosphate (dAMP) coordination ion had the maximum binding energy among all the coordination ions, however, the coordinated dAMP possessed the smallest deformation energy. Concerning the differences in the calculation results of the two basis sets, the U=O bond lengths calculated by the ECP60MWB-SEG basis set were slightly longer than those obtained by the RLC ECP basis set, while the lengths of the coordination bonds showed opposite tendency. Additionally, the binding energy values calculated at the ECP60MWB-SEG basis set level were more negative than the RLC ECP basis set. The stretching vibrational frequencies of the U=O and P=O bonds exhibited a general red-shift, and the stretching vibrational frequencies of dAMP coordination ion decreased significantly. The topological analysis of electron density indicated that the coordination bond showed ionic character. It revealed that the charge transfer was from ligands to uranyl ion during the coordination process, and the maximum number of charge transferred by ligands in the dAMP coordination ion. Moreover, the molecular orbital composition demonstrated that the high-lying occupied molecular orbitals were actually contributed by π orbital of dNMP ligands, while the 5f atomic orbitals of uranium center mainly contributed to the low-lying unoccupied molecular orbitals. The frontier orbitals energy gap of deoxyguanosine monophosphate (dGMP) coordination ion was much smaller than any other coordination ions.
  • 加载中
    1. [1]

      Garmash S A, Smirnova V S, Karp O E. J. Environ. Radioact., 2014, 127:163-170  doi: 10.1016/j.jenvrad.2012.12.009

    2. [2]

      ZHU Shou-Peng, HU Qi-Yue, WANG Liu-Yi, et al. Bulletin of Medical Research, 1993, 22(8):21-22
       

    3. [3]

      Nielsen P E, Jeppesen C, Buchardt O. FEBS Lett., 1988, 235:122-124  doi: 10.1016/0014-5793(88)81245-6

    4. [4]

      LI Hong-Yang, HAN Shi-Tong, TANG Yun-Fei, et al. Acta Sci. Circum., 2017, 37(10):3635-3641  doi: 10.13671/j.hjkxxb.2017.0138

    5. [5]

      Tang Q, Yuan Y L, Xiao X L, et al. Microchim. Acta, 2013, 180:1059-1064  doi: 10.1007/s00604-013-1021-8

    6. [6]

      MOU Yong-Xiao, CAO Jian-Ping, WENG Yue-Yue, et al. Chinese J. Inorg. Chem., 2019, 35(3):403-412

    7. [7]

      Mohamadi M, Ebrahimipour S Y, Castro J, et al. J. Photochem. Photobiol. B, 2016, 158:219-227  doi: 10.1016/j.jphotobiol.2016.03.001

    8. [8]

      ZHAO Ya-Ying, ZHOU Li-Xin. Journal of Fuzhou University:Natural Science Edition, 2004, 2:201-207  doi: 10.3969/j.issn.1000-2243.2004.02.017

    9. [9]

      Sponer J, Burda J V, Mejzlik P, et al. J. Biomol. Struct. Dyn., 1997, 14:613-629  doi: 10.1080/07391102.1997.10508161

    10. [10]

      Terron A, Tomas L, Bauza A, et al. CrystEngComm, 2017, 19(39):5830-5834  doi: 10.1039/C7CE01400G

    11. [11]

      LI Zhen-Zhang, WANG Xian-Ju, SUN Guang-Dong, et al. J. Atom. Mol. Phys., 2014, 31(5):740-745  doi: 10.3969/j.issn.1000-0364.2014.05.010

    12. [12]

      ZHANG Shu-Qin(张淑琴). Thesis for the Doctorate of Shanghai University(上海大学博士论文). 2013.

    13. [13]

      Truhlar D G. Theor. Chem. Acc., 2008, 120:215-241  doi: 10.1007/s00214-007-0310-x

    14. [14]

      Khalid M, Ullah R S, Choudhary M A, et al. J. Mol. Struct., 2018, 1167:57-68  doi: 10.1016/j.molstruc.2018.04.084

    15. [15]

      JIN Qin, SUN Xiao-Ling, WANG Yan-Ni, et al. Acta Phys.-Chim. Sin., 2014, 30(7):1247-1258
       

    16. [16]

      Mardirossian N, Gordon M H. J. Chem. Theory Comput., 2016, 12:4303-4325  doi: 10.1021/acs.jctc.6b00637

    17. [17]

      Soltani A, Taghartapeh M R, Erfani M V, et al. Mater. Sci. Eng. C, 2018, 92:216-227  doi: 10.1016/j.msec.2018.06.048

    18. [18]

      Platts J A, Baker R J. Phys. Chem. Chem. Phys., 2018, 20(22):15380-15388  doi: 10.1039/C8CP02444H

    19. [19]

      Cheng X L. J. Chem. Thermodyn., 2019, 132:470-475  doi: 10.1016/j.jct.2017.11.001

    20. [20]

      Chandrasekar A, Ghanty T K, Brahmmananda C V S, et al. Phys. Chem. Chem. Phys., 2019, 21(10):5566-5577  doi: 10.1039/C9CP00479C

    21. [21]

      Chandrasekar A, Brahmmananda C V S, Sundararajan M, et al. Dalton Trans., 2018, 47(11):3841-3850  doi: 10.1039/C7DT04902A

    22. [22]

      Fuentealba P, Preuss H, Stoll H, et al. Chem. Phys. Lett., 1982, 89:418-422  doi: 10.1016/0009-2614(82)80012-2

    23. [23]

      Cao X Y, Dolg M, Stoll H. J. Chem. Phys., 2003, 118(2):487-496  doi: 10.1063/1.1521431

    24. [24]

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian16, Revision B.1, Gaussian, Inc., Wallingford CT, 2016.

    25. [25]

      Lu T, Chen F W. J. Comput. Chem., 2012, 33(5):580-592  doi: 10.1002/jcc.22885

    26. [26]

      Bader R F W, Beddall P M. J. Chem. Phys., 1972, 56:3320-3329  doi: 10.1063/1.1677699

    27. [27]

      LU Tian, CHEN Fei-Wu. Acta Chim. Sinica, 2011, 69(20):2393-2406
       

    28. [28]

      Miertus S, Scrocco E, Tomasi J. Chem. Phys., 1981, 55(1):117-129  doi: 10.1016/0301-0104(81)85090-2

    29. [29]

      Dennington R D, Keith T A, Millam J M, et al. GaussView 6.0.16, Semichem, Inc., Shawnee Mission KS, 2016.

    30. [30]

      Dent A J, Ramsay J D F, Swanton S W. J. Colloid Interface Sci., 1992, 150:45-60  doi: 10.1016/0021-9797(92)90267-P

    31. [31]

      Chisholm B C, Conradson S D, Buscher C T, et al. Geochim. Cosmochim. Acta, 1994, 58:3625-3631  doi: 10.1016/0016-7037(94)90154-6

    32. [32]

      Hughes K A, Burns P C. Am. Mineral., 2003, 88:962-966  doi: 10.2138/am-2003-0703

    33. [33]

      Allen P G, Bucher J J, Clark D L, et al. Inorg. Chem., 1995, 34:4797-4807  doi: 10.1021/ic00123a013

    34. [34]

      Grigorev M S, Tananaev I G, Krot N N, et al. Radiochemistry, 1997, 39:323-327

    35. [35]

      SUN Xiao-Ling(孙晓玲). Thesis for the Master of Wenzhou Medical University(温州医科大学硕士论文). 2014.

    36. [36]

      Cao Z J, Balasubramanian K. J. Chem. Phys., 2005, 123(11):114309-114320  doi: 10.1063/1.2018754

    37. [37]

      Hay P J, Martin R L, Schreckenbach G. J. Phys. Chem. A, 2000, 104:6259-6270  doi: 10.1021/jp000519h

    38. [38]

      Guo X J, Cheng L, Hu J T, et al. Nucl. Sci. Tech., 2018, 29:90-102  doi: 10.1007/s41365-018-0422-0

    39. [39]

      Kalashnyk N, Perry D L, Massuyeau F, et al. J. Phys. Chem. C, 2018, 122(13):7410-7420  doi: 10.1021/acs.jpcc.8b00871

    40. [40]

      Gupta R, Sundararajan M, Gamare J S. Anal. Chem., 2017, 89(15):8156-8161  doi: 10.1021/acs.analchem.7b01973

    41. [41]

      Wu Q Y, Wang C Z, Lan J H. RSC Adv., 2016, 6(74):69773-69781  doi: 10.1039/C6RA14906E

    42. [42]

      Zhao H B, Zheng M, Schreckenbach G, et al. Inorg. Chem., 2017, 56(5):2763-2776  doi: 10.1021/acs.inorgchem.6b02927

    43. [43]

      GU Jia-Fang, XU Ke, CHEN Wen-Kai. Chinese J. Inorg. Chem., 2017, 33(9):1579-1586
       

    44. [44]

      Liu Y, Zhao J J, Li F Y, et al. J. Comput. Chem., 2013, 34(2):121-131  doi: 10.1002/jcc.23112

    45. [45]

      Jakubikova E, Rappe A K, Bernstein E R. J. Phys. Chem. A, 2006, 110(31):9529-9541  doi: 10.1021/jp0680239

    46. [46]

      SUN Tao, WANG Yi-Bo. Acta Phys.-Chim. Sin., 2011, 27(11):2553-2558  doi: 10.3866/PKU.WHXB20111017

    47. [47]

      Tsushima S, Yang T X, Suzuki A. Chem. Phys. Lett., 2001, 334:365-373  doi: 10.1016/S0009-2614(00)01470-6

    48. [48]

      Toth L M, Begun G M. J. Phys. Chem., 1981, 85:547-549  doi: 10.1021/j150605a018

    49. [49]

      Jones L H, Penneman R A. J. Chem. Phys., 1953, 21(3):542-544  doi: 10.1063/1.1698941

    50. [50]

      GU Jia-Fang, LU Chun-Hai, CHEN Wen-Kai. Acta Phys.-Chim. Sin., 2009, 25(4):655-660  doi: 10.3866/PKU.WHXB20090419

    51. [51]

      Straka M, Dyall K G, Pyykko P. Theor. Chem. Acc., 2001, 106:393-403  doi: 10.1007/s002140100295

    52. [52]

      Dyall K G. Mol. Phys., 1999, 96:511-518  doi: 10.1080/00268979909482988

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    3. [3]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    4. [4]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    5. [5]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    10. [10]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    13. [13]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    14. [14]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    15. [15]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    16. [16]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    17. [17]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    18. [18]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    19. [19]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    20. [20]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

Metrics
  • PDF Downloads(23)
  • Abstract views(2331)
  • HTML views(593)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return