ElectrocatalyticHydrogen Evolution Performance of Ultra-Thin MoS2 Loaded Graphene Hybrids
- Corresponding author: ZHANG Bang-Wen, bangwenz@126.com
Citation: GUO Shu-Wang, GAO Zhan-Yong, SONG Jin-Ling, BULIN Chao-Ke, ZHANG Bang-Wen. ElectrocatalyticHydrogen Evolution Performance of Ultra-Thin MoS2 Loaded Graphene Hybrids[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(7): 1195-1202. doi: 10.11862/CJIC.2019.131
Nrskov J K, Bligaard T, Rossmeisl J, et al. Nat. Chem., 2009, 1(1):37-46
Hinnemann B, Moses P G, Bonde J, et al. J. Am. Chem. Soc., 2005, 127(15):5308-5309
doi: 10.1021/ja0504690
Lukowski M A, Daniel A S, MengF, et al. J. Am. Chem. Soc., 2013, 135(28):10274-10277
doi: 10.1021/ja404523s
Voiry D, Salehi M, Silva R, et al. Nano Lett., 2013, 13(12):6222-6227
doi: 10.1021/nl403661s
Lin J, Peng Z W, Wang G, et al. Adv. Energy Mater., 2014, 4(10):1301875
doi: 10.1002/aenm.201301875
Liu W L, Benson J, Dawson C, et al. Nanoscale, 2017, 9(36):13515-13526
doi: 10.1039/C7NR04790H
Faber M S, Dziedzic R, Lukowski M A, et al. J. Am. Chem. Soc., 2014, 136(28):10053-10061
doi: 10.1021/ja504099w
Kong D S, Wang H T, Lu Z L, et al. J. Am. Chem. Soc., 2014, 136(13):4897-4900
doi: 10.1021/ja501497n
Vrubel H, Merki D, Hu X. Energy Environ. Sci., 2012, 5(3):6136-6144
doi: 10.1039/c2ee02835b
Wang T Y, Liu L, Zhu Z W, et al. Energy Environ. Sci., 2013, 6(2):625-633
Laursen A B, Kegnaes S, Dahl S, et al. Energy Environ. Sci., 2012, 5(2):5577-5591
doi: 10.1039/c2ee02618j
Kibsgaard J, Chen Z B, Reinecke B N, et al. Nat. Mater., 2012, 11(11):963-969
doi: 10.1038/nmat3439
Kong D S, Wang H T, Cha J J, et al. Nano Lett., 2013, 13(3):1341-1347
doi: 10.1021/nl400258t
Jaramillo T F, Jrgensen K P, Bonde J, et al. Science, 2007, 317(5834):100-102
doi: 10.1126/science.1141483
Yin Y, Han J C, Zhang Y M, et al. J. Am. Chem. Soc., 2016, 138(25):7965-7972
doi: 10.1021/jacs.6b03714
Lau V W, Masters A F, Bond A M, et al. Chem. Eur. J., 2012, 18(26):8230-8239
doi: 10.1002/chem.v18.26
Tang Y J, Wang Y, Wang X L, et al. Adv. Energy Mater., 2016, 6(12):1600116
doi: 10.1002/aenm.201600116
Xie J F, Qu H C, Xin J P, et al. Nano Res., 2017, 10(4):1178-1188
doi: 10.1007/s12274-017-1421-x
Jayabal S, Saranya G, Wu J, et al. J. Mater. Chem. A, 2017, 5(47):24540-24563
doi: 10.1039/C7TA08327K
Yu X Y, Feng Y, Jeon Y, et al. Adv. Mater., 2016, 28(40):9006-9011
doi: 10.1002/adma.v28.40
Wu L Q, Xu X B, Zhao Y Q, et al. Appl. Surf. Sci., 2017, 425:470-477
doi: 10.1016/j.apsusc.2017.06.223
Zhao X, Ma X, Lu Q Q, et al. Electrochim. Acta, 2017, 249:72-78
doi: 10.1016/j.electacta.2017.08.004
Ye L J, Chen S J, Li W J, et al. J. Phys. Chem. C, 2015, 119(17):9560-9567
doi: 10.1021/jp5128018
Li R C, Yang L J, Xiong T L, et al. J. Power Sources, 2017, 356:133-139
doi: 10.1016/j.jpowsour.2017.04.060
Guo J X, Li F F, Sun Y F, et al. J. Power Sources, 2015, 291:195-200
doi: 10.1016/j.jpowsour.2015.05.034
Cao P F, Peng J, Li J Q, et al. J. Power Sources, 2017, 347:210-219
doi: 10.1016/j.jpowsour.2017.02.056
Paniagua S A, Baltazar J, Sojoudi H, et al. Mater. Horiz., 2014, 1:111-115
doi: 10.1039/C3MH00035D
Xu X B, Sun Y, Qiao W, et al. Appl. Surf. Sci., 2017, 396:1520-1527
doi: 10.1016/j.apsusc.2016.11.201
Li Y G, Wang H L, Xie L M, et al. J. Am. Chem. Soc., 2011, 133(19):7296-7299
doi: 10.1021/ja201269b
WAN Meng, YU Dan-Ni, ZHU Han, et al. Chinese J. Inorg. Chem., 2017, 33(4):595-600
Hua S X, Qu D, An L, et al. Chin. J. Catal., 2017, 38(6):1028-1037
doi: 10.1016/S1872-2067(17)62830-4
Guo Y X, Gan L F, Shang C S, et al. Adv. Funct. Mater., 2017, 27(5):1602699
doi: 10.1002/adfm.v27.5
Yin X Y, Yan Y, Miao M, et al. Chem. Eur. J., 2017, 24(3):556-560
Yu H T, Zhang B W, Bulin C K, et al. Sci. Rep., 2016, 6:36143
doi: 10.1038/srep36143
Xu S R, Zhu Q, Chen T, et al. Mater. Chem. Phys., 2018, 219:399-410
doi: 10.1016/j.matchemphys.2018.08.048
Bosch-Navarro C, Coronado E, Marti-Gastaldo C, et al. Nanoscale, 2012, 4(13):3977-3982
doi: 10.1039/c2nr30605k
Gopalakrishnan D, Damien D, Shaijumon M M. ACS Nano, 2014, 8(5):5297-5303
doi: 10.1021/nn501479e
Li H, Zhang Q, Yap C C R, et al. Adv. Funct. Mater., 2012, 22(7):1385-1390
doi: 10.1002/adfm.v22.7
Li F, Li J, Lin X Q, et al. J. Power Sources, 2015, 300:301-308
doi: 10.1016/j.jpowsour.2015.09.084
Bonde J, Moses P G, Jaramillo T F, et al. Faraday Discuss., 2009, 140:219-231
doi: 10.1039/B803857K
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
(a) FESEM image, (b) EDS spectrum, (c, d) TEM image, (e) scanning transmission electron microscope (STEM) image and (f) corresponding element mappings of C, N, S and Mo
(a) Survey spectrum; (b) Element composition; Spectra of (c) C1s, (d) N1s, (e) Mo3d and (f) S2p
(a) LSV curves and (b) Tafel curves of rGO, UT-MoS2/rGO and Pt/C; (c) CV curves at differentscan rates of UT-MoS2/rGO;
(d) Difference of current density at 0.15 V (vs RHE) varied with scan rate; (e) EIS of rGO, MoS2 and UT-MoS2/rGO;
(f) Durability test of UT-MoS2/rGO