High Sensitivity and Selectivity of Aminoantipyrine Schiff Base for the Recognition of Fe2+
- Corresponding author: ZHANG Yu, yuzhang@hytc.edu.cn ZHAO Jian-Ying, zhaojy008@hytc.edu.cn
Citation: CHEN Sheng-Tian, ZHANG Yu, ZHAO Jian-Ying, MA Kui-Rong, LI Rong-Qing, TANG Guo-Dong. High Sensitivity and Selectivity of Aminoantipyrine Schiff Base for the Recognition of Fe2+[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(4): 737-744. doi: 10.11862/CJIC.2019.091
Pierre J L, Fontecave M, Crichton R R. Biometals, 2002, 15:341-346
doi: 10.1023/A:1020259021641
Frausto da Silva J J R, Williams R J P. The Biological Chemistry of the Elements:the Inorganic Chemistry of Life. Oxford:Clarendon Press, 1991:101
Bertini I, Gray H B, Lippard S J, et al. Bioinorganic Chem-istry. Mill Valley: University Science Book, 1994.
Nolan E M, Lippard S J. Chem. Rev., 2008, 108:3443-3480
doi: 10.1021/cr068000q
Domaille D W, Que E L, Chang C J. Nat. Chem. Biol., 2008, 4:168-175
doi: 10.1038/nchembio.69
Silva A P, Fox D B, Huxley A J M, et al. Chem. Rev., 2000, 205:41-57
Czarnik A. Fluorescent Chemosensors for Ion and Molecule Recognition. Washington, DC: American Chemical Society, 1992.
Kim H M, Cho B R. Acc. Chem. Res., 2009, 42:863-872
doi: 10.1021/ar800185u
Matzanke B F, Muller-Matzanke G, Raymond K N. Iron Carriers and Iron Proteins: Vol.5. Loehr T M. Ed., New York: VCH, 1989.
Gray H B, Winkler J R. Annu. Rev. Biochem., 1996, 65:537-561
doi: 10.1146/annurev.bi.65.070196.002541
Kaplan C D, Kaplan J. Chem. Rev., 2009, 109:4536-4552
doi: 10.1021/cr9001676
Okonko D O, Grzeslo A, Witkowski T, et al. J. Am. Coll. Cardiol., 2008, 51:103-112
doi: 10.1016/j.jacc.2007.09.036
Freixenet N, Vilardell C, Llaurad G, et al. Diabetes Res. Clin. Pract., 2011, 91:33-36
doi: 10.1016/j.diabres.2010.10.003
McLaren C E, Gordeuk V R, Chen W P, et al. Transl. Res., 2008, 151:97-109
doi: 10.1016/j.trsl.2007.10.002
Dixon S J, Lemberg K M, Lamprecht M R. Cell, 2012, 149:1060-1072
doi: 10.1016/j.cell.2012.03.042
Yu H, Guo P, Xie X. J. Cell Mol. Med., 2017, 21:648-657
doi: 10.1111/jcmm.2017.21.issue-4
Zhu C C, Wang M J, Qiu L, et al. Dyes Pigm., 2018, 157:328-333
doi: 10.1016/j.dyepig.2018.05.008
Canfranc E, Abarca A, Sierra I, et al. J. Pharm. Biomed. Anal., 2001, 25:103-108
doi: 10.1016/S0731-7085(00)00487-8
Tangen G, Wickstrm T, Lierhagen S, et al. Environ. Sci. Technol., 2002, 36:5421-5425
doi: 10.1021/es020077i
Oh J W, Kim T H, Yoo S W, et al. Sens. Actuators A, 2013, 177:813-817
doi: 10.1016/j.snb.2012.11.066
Lee J A, Eom G H, Park H M, et al. J. Korean Chem. Soc., 2012, 33:3625-3628
doi: 10.5012/bkcs.2012.33.11.3625
YUAN Yue-Hua, TIAN Mao-Zhong, FENG Feng, et al. Progress in Chemistry, 2010, 22(10):1929-1939
QIU Lin, JI Yi-Fan, ZHU Cheng-Cheng, et al. Chinese J. Inorg. Chem., 2014, 30(1):169-178
Zhang Y Y, Chen X Z, Liu X Y, et al. Sens. Actuators B, 2018, 273:1077-1084
doi: 10.1016/j.snb.2018.07.012
Choa C H C C, Wan C F, Wu A T. Inorg. Chem. Commun., 2014, 41:88-91
doi: 10.1016/j.inoche.2013.12.027
Wang S, Gwon S Y, Kim S H. Spectrochim. Acta Part A, 2010, 76:293-296
doi: 10.1016/j.saa.2009.12.018
Tamil S G, Kumaresan M, Sivaraj R, et al. Sens. Actuators B, 2016, 229:181-189
doi: 10.1016/j.snb.2016.01.097
Zhou Y, Zhou H, Zhang J, et al. Spectrochim. Acta Part A, 2012, 98:14-17
doi: 10.1016/j.saa.2012.08.025
Xiong J J, Huang P C, Zhang C Y, et al. Sens. Actuators B, 2016, 226:30-36
doi: 10.1016/j.snb.2015.11.113
Hao Z Y, Liu Q W, Xu J, et al. Chem. Pharma. Bull., 2010, 58:1306-1312
doi: 10.1248/cpb.58.1306
Siddan P, Somasundharam S P. Tetrahedron Lett., 2015, 56:5920-5923
doi: 10.1016/j.tetlet.2015.09.032
Wang Y W, Zhang Y, Zhu D R, et al. Spectrochim. Acta Part A, 2015, 147:31-42
doi: 10.1016/j.saa.2015.02.053
Grynkiewcz G, Poenie M, Tsein R Y. J. Biol. Chem., 1985, 260:3440-3450
Dixon I M, Khan S, Alary F, et al. Dalton Trans., 2014, 43:15898-15905
doi: 10.1039/C4DT01939C
John P P, Matthias E, Kieron B. J. Chem. Phys., 1996, 105:9982-9985
doi: 10.1063/1.472933
Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision A.02, Gaussian Inc, Wallingford, CT, 2009.
Dennington R, Keith T, Millam J. GaussView, Semichem Inc., Shawnee Mission, KS, 2009.
Zhou X, Yu B, Guo Y, et al. Inorg. Chem., 2010, 49:4002-4007
doi: 10.1021/ic901354x
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2023.100393
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Yun-Fei Zhang , Chun-Hui Zhang , Jian-Hui Xu , Lei Li , Dan Li , Jin-Hong Fan , Jiale Gao , Xin Quan , Qi Wu , Yue Zou , Yan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
Linjing Li , Wenlai Xu , Jianyong Ning , Yaping Zhong , Chuyue Zhang , Jiane Zuo , Zhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Guihuang Fang , Wei Chen , Hongwei Yang , Haisheng Fang , Chuang Yu , Maoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799
Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
cL=40 μmol·L-1; Inset: Plot of the UV-Vis absorbance at 547 nm as a function of Fe2+ concentration
Total concentration of L and Fe2+ was 10 μmol·L-1; λ=547 nm
Hydrogen atoms have been omitted for clarity
Inset: UV-Vis absorption of L and L+Fe2+; Concentrations of L and Fe2+: 10 μmol·L-1, respectively
Absorbance at 547 nm in water/ethanol (9:1, V/V)
Absorbance at 547 nm in water/ethanol (9:1, V/V)