Citation: LEI Li-Ling, YANG Qing-Xiang, ZHAO Jun-Hong, ZHANG Yan, JIA Chao-Yang, LU Ran, NIE Li-Min, CHEN Zhi-Jun. Preparation and Adsorption of 2-Nitro-1, 3-benzenediol of Fe3O4/GO/PPy Composite[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(4): 658-666. doi: 10.11862/CJIC.2019.078 shu

Preparation and Adsorption of 2-Nitro-1, 3-benzenediol of Fe3O4/GO/PPy Composite

  • Corresponding author: CHEN Zhi-Jun, mcchenzj@zzuli.edu.cn
  • Received Date: 20 November 2018
    Revised Date: 21 February 2019

Figures(11)

  • In order to improve the ability to remove 2-nitro-1, 3-benzenediol (NRC) in water, Fe3O4/GO/PPy ternary composites were prepared by hydrothermal method using GO prepared by modified Hummers method. UV-visible absorption spectroscopy (UV-Vis), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), ζ potential analysis to study the structural of magnetic nanocomposites, while the pH value of the solution, the amount of adsorbent, initial concentration, adsorption time and temperature on the adsorption of NRC were studied by adsorption kinetics and adsorption isotherms. The results showed that the prepared Fe3O4/GO/PPy composites were layered dispersed structure; GO layer structure was stripped; PPy and Fe3O4 particles irregularly interspersed among the GO sheets. Fe3O4 particles were the polyhedral crystal structure with polyhedral size in the range of 100~300 nm. The interface between Fe3O4 and PPy particles in the graphene sheet layer was in close contact with each other; Fe3O4/GO/PPy could easily separated in water because of the superparamagnetism. Fe3O4/GO/PPy could be separated with 40 s under external magnetic field and the removal ratio of the NRC was 91.6%. The adsorption property of Fe3O4/GO/PPy for NRC obtained the strongest adsorption under the NRC initial concentration (C0) was 200 mg·L-1, pH value was 5.00±0.05, tempreture (T) was 318.15 K, adsorbent dosage (m) was 10 mg·L-1 and time (t) was 6 h, and the adsorption amount reached 163.3 mg·g-1. The adsorption kinetics of NRC follows the second-order kinetic model, and the adsorption isotherm conforms to the Langmuir model. After using NRC for five times, the removal rate decreased from 91.6% to 77.6%, that illustrated Fe3O4/GO/PPy magnetic complex possessed good stability and repeated use ability.
  • 加载中
    1. [1]

      (a) SONG Lian-Peng(宋连朋), WEI Lian-Yu(魏连雨), ZHAO Le-Jun(赵乐军), et al. Water Supply and Sewerage(给水排水), 2013, 39(3): 39-44
      (b)HUANG Tai-Biao(黄太彪), LI Liu-Zhu(李刘柱), GAO Song(高嵩), et al. Industrial Water and Wastewater(工业用水与废水), 2016, 47(4): 12-15

    2. [2]

      (a) Korotcenkov G, Brinzari V, Cho B K. Microchim. Acta, 2016, 183(3): 1033-1054
      (b)Qin Y L, Long M, Tan B H, et al. Nano-Micro. Lett., 2014, 6(2): 125-135

    3. [3]

      (a) Leong M L, Lee K M, Lai S O, et al. Desalination, 2011, 270(1): 181-187
      (b)Ben-Youssef C, Vázquez-Rodríguez G A. Bioresour. Technol., 2011, 102(4): 3740-3747

    4. [4]

      Steevensz A, Madur S, Feng W, et al. Enzyme Microb. Technol., 2014, 55(2):65-71
       

    5. [5]

      Madani K. J. Environ. Stud. Sci., 2014, 4(4):315-328  doi: 10.1007/s13412-014-0182-z

    6. [6]

      Hadjltaief H B, Costa P D, Beaunier P, et al. Appl. Clay Sci., 2014, 91-92(15):46-54
       

    7. [7]

      Shimizu A, Tokumura M, Nakajima K, et al. J. Hazard. Mater., 2012, 201(1):60-67
       

    8. [8]

      Nikazar M, Alizadeh M, Lalavi R, et al. Iran. J. Environ. Health Sci. Eng., 2014, 12(1):12-21  doi: 10.1186/2052-336X-12-12

    9. [9]

      Yang C F, Yang S Y, Qian Y, et al. Ind. Eng. Chem. Res., 2013, 52(34):12108-12115  doi: 10.1021/ie4007535

    10. [10]

      (a) Ehtash M, Fournier-Salaün M C, Dimitrov K, et al. Chem. Eng. J., 2014, 250(6): 42-47
      (b)Kazemi P, Peydayesh M, Bandegi A, et al. Chem. Eng. Res. Des., 2014, 92(2): 375-383

    11. [11]

      Zhou C, Zhu H, Wang Q, et al. RSC Adv., 2017, 7(30):18466-18479  doi: 10.1039/C7RA01147D

    12. [12]

      (a) Bizerea S O, Preda E, Botez A, et al. Environ. Sci. Pollut. Res., 2013, 20: 6367-6381
      (b)Guo X L, Wang J, Wang Y, et al. Procedia Environ. Sci., 2012, 12(12): 152-158
      (c)Giraldo L, Moreno-Piraján J C. J. Anal. Appl. Pyrolysis, 2014, 106: 41-47

    13. [13]

      Wu Z B, Yuan X Z, Zhang J, et al. ChemCatChem, 2017, 9(2):23-45
       

    14. [14]

      (a) Ekramul Mahmud H N, Huq A K O, Yahya R B. Cheminformatics, 2016, 47(13): 14778-14791
      (b)Setshedi K Z, Bhaumik M, Onyango M S, et al. Chem. Eng. J., 2015, 262(6): 921-931
      (c)Wu M, Han H F, Ni L L, et al. Materials, 2018, 11(1): 164-175
      (d)Simamora P, Saragih C S, Hasibuan D P, et al. Mater. Today, 2018, 5(7): 14970-14974

    15. [15]

      (a) Hu H F, Yang L, Lin Z, et al. Int. J. Biol. Macromol., 2018, 114(15): 256-262
      (b)Dai Y M, Zou J Q, Liu D Y, et al. Colloids Surf. A, 2018, 550(5): 90-98

    16. [16]

      Wang Y H, Li L L, Luo C N, et al. Int. J. Biol. Macromol., 2016, 86:505-511  doi: 10.1016/j.ijbiomac.2016.01.035

    17. [17]

      Karthik R, Meenakshi S. Synth. Met., 2014, 198:181-187  doi: 10.1016/j.synthmet.2014.10.012

    18. [18]

      Chandra V, Kim K S. Chem. Commun., 2011, 47(13):3942-3944  doi: 10.1039/c1cc00005e

    19. [19]

      Wang Y Z, Wang Y S, Yan X R, et al. Chemosphere, 2016, 153:485-493  doi: 10.1016/j.chemosphere.2016.03.036

    20. [20]

      Mthombeni N H, Mbakop S, Ochieng A, et al. J. Taiwan Inst. Chem. Eng., 2016, 66:172-180  doi: 10.1016/j.jtice.2016.06.016

    21. [21]

      Gari V R D K, Min K. Monatsh. Chem., 2015, 146(9):1445-1453  doi: 10.1007/s00706-015-1429-4

    22. [22]

      Kumar V, Jahan F, Raghuwanshi S, et al. Biotechnol. Bioprocess Eng., 2013, 18:787-795  doi: 10.1007/s12257-012-0793-8

    23. [23]

      Setshedi K Z, Bhaumik M, Onyango M S, et al. Chem. Eng. J., 2015, 262:921-931  doi: 10.1016/j.cej.2014.10.034

    24. [24]

      (a) Gao F, Gu H B, Wang H W, et al. RSC Adv., 2015, 5(74): 60208-60219
      (b)Zabihi M, Ahmadpour A, Asl A H. J. Hazard. Mater., 2009, 167(1): 230-236
      (c)Wang H, Yuan X Z, Yan W, et al.Chem. Eng. J., 2015, 262(4): 597-606

    25. [25]

      (a) Huong P T, Lee B K, Kim J. Process Saf. Environ. Prot., 2016, 104: 314-322
      (b)Lu G R, Liu J M, Xiong Z H, et al. J. Chem. Eng. Data, 2016, 61(11): 3868-3876
      (c)Jia Z, Jiang M, Wu G. Chem. Eng. J., 2016, 307: 283-290
      (d)Li Y, Yang C X, Yan X P. Chem. Commun., 2017, 53(16): 2511-2514
      (e)Zhou M, Wu Y N, Qiao J, et al. J. Colloid Interface Sci., 2013, 405(9): 157-163
      (f)YANG Qing-Xiang (杨清香), REN Shuang-Shuang(任爽爽), ZHAO Qian-Qian(赵倩倩), et al. Chinese J. Inorg.Chem.(无机化学学报), 2017, 33(5): 843-852

    26. [26]

      Mthombeni N H, Mbakop S, Ochieng A, et al. J. Taiwan Inst. Chem. Eng., 2016, 66:172-180  doi: 10.1016/j.jtice.2016.06.016

  • 加载中
    1. [1]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    7. [7]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    8. [8]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    9. [9]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    10. [10]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    11. [11]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    12. [12]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    13. [13]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    14. [14]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    15. [15]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    16. [16]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

Metrics
  • PDF Downloads(2)
  • Abstract views(607)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return