Citation: LEI Li-Ling, YANG Qing-Xiang, ZHAO Jun-Hong, ZHANG Yan, JIA Chao-Yang, LU Ran, NIE Li-Min, CHEN Zhi-Jun. Preparation and Adsorption of 2-Nitro-1, 3-benzenediol of Fe3O4/GO/PPy Composite[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(4): 658-666. doi: 10.11862/CJIC.2019.078 shu

Preparation and Adsorption of 2-Nitro-1, 3-benzenediol of Fe3O4/GO/PPy Composite

  • Corresponding author: CHEN Zhi-Jun, mcchenzj@zzuli.edu.cn
  • Received Date: 20 November 2018
    Revised Date: 21 February 2019

Figures(11)

  • In order to improve the ability to remove 2-nitro-1, 3-benzenediol (NRC) in water, Fe3O4/GO/PPy ternary composites were prepared by hydrothermal method using GO prepared by modified Hummers method. UV-visible absorption spectroscopy (UV-Vis), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), ζ potential analysis to study the structural of magnetic nanocomposites, while the pH value of the solution, the amount of adsorbent, initial concentration, adsorption time and temperature on the adsorption of NRC were studied by adsorption kinetics and adsorption isotherms. The results showed that the prepared Fe3O4/GO/PPy composites were layered dispersed structure; GO layer structure was stripped; PPy and Fe3O4 particles irregularly interspersed among the GO sheets. Fe3O4 particles were the polyhedral crystal structure with polyhedral size in the range of 100~300 nm. The interface between Fe3O4 and PPy particles in the graphene sheet layer was in close contact with each other; Fe3O4/GO/PPy could easily separated in water because of the superparamagnetism. Fe3O4/GO/PPy could be separated with 40 s under external magnetic field and the removal ratio of the NRC was 91.6%. The adsorption property of Fe3O4/GO/PPy for NRC obtained the strongest adsorption under the NRC initial concentration (C0) was 200 mg·L-1, pH value was 5.00±0.05, tempreture (T) was 318.15 K, adsorbent dosage (m) was 10 mg·L-1 and time (t) was 6 h, and the adsorption amount reached 163.3 mg·g-1. The adsorption kinetics of NRC follows the second-order kinetic model, and the adsorption isotherm conforms to the Langmuir model. After using NRC for five times, the removal rate decreased from 91.6% to 77.6%, that illustrated Fe3O4/GO/PPy magnetic complex possessed good stability and repeated use ability.
  • 加载中
    1. [1]

      (a) SONG Lian-Peng(宋连朋), WEI Lian-Yu(魏连雨), ZHAO Le-Jun(赵乐军), et al. Water Supply and Sewerage(给水排水), 2013, 39(3): 39-44
      (b)HUANG Tai-Biao(黄太彪), LI Liu-Zhu(李刘柱), GAO Song(高嵩), et al. Industrial Water and Wastewater(工业用水与废水), 2016, 47(4): 12-15

    2. [2]

      (a) Korotcenkov G, Brinzari V, Cho B K. Microchim. Acta, 2016, 183(3): 1033-1054
      (b)Qin Y L, Long M, Tan B H, et al. Nano-Micro. Lett., 2014, 6(2): 125-135

    3. [3]

      (a) Leong M L, Lee K M, Lai S O, et al. Desalination, 2011, 270(1): 181-187
      (b)Ben-Youssef C, Vázquez-Rodríguez G A. Bioresour. Technol., 2011, 102(4): 3740-3747

    4. [4]

      Steevensz A, Madur S, Feng W, et al. Enzyme Microb. Technol., 2014, 55(2):65-71
       

    5. [5]

      Madani K. J. Environ. Stud. Sci., 2014, 4(4):315-328  doi: 10.1007/s13412-014-0182-z

    6. [6]

      Hadjltaief H B, Costa P D, Beaunier P, et al. Appl. Clay Sci., 2014, 91-92(15):46-54
       

    7. [7]

      Shimizu A, Tokumura M, Nakajima K, et al. J. Hazard. Mater., 2012, 201(1):60-67
       

    8. [8]

      Nikazar M, Alizadeh M, Lalavi R, et al. Iran. J. Environ. Health Sci. Eng., 2014, 12(1):12-21  doi: 10.1186/2052-336X-12-12

    9. [9]

      Yang C F, Yang S Y, Qian Y, et al. Ind. Eng. Chem. Res., 2013, 52(34):12108-12115  doi: 10.1021/ie4007535

    10. [10]

      (a) Ehtash M, Fournier-Salaün M C, Dimitrov K, et al. Chem. Eng. J., 2014, 250(6): 42-47
      (b)Kazemi P, Peydayesh M, Bandegi A, et al. Chem. Eng. Res. Des., 2014, 92(2): 375-383

    11. [11]

      Zhou C, Zhu H, Wang Q, et al. RSC Adv., 2017, 7(30):18466-18479  doi: 10.1039/C7RA01147D

    12. [12]

      (a) Bizerea S O, Preda E, Botez A, et al. Environ. Sci. Pollut. Res., 2013, 20: 6367-6381
      (b)Guo X L, Wang J, Wang Y, et al. Procedia Environ. Sci., 2012, 12(12): 152-158
      (c)Giraldo L, Moreno-Piraján J C. J. Anal. Appl. Pyrolysis, 2014, 106: 41-47

    13. [13]

      Wu Z B, Yuan X Z, Zhang J, et al. ChemCatChem, 2017, 9(2):23-45
       

    14. [14]

      (a) Ekramul Mahmud H N, Huq A K O, Yahya R B. Cheminformatics, 2016, 47(13): 14778-14791
      (b)Setshedi K Z, Bhaumik M, Onyango M S, et al. Chem. Eng. J., 2015, 262(6): 921-931
      (c)Wu M, Han H F, Ni L L, et al. Materials, 2018, 11(1): 164-175
      (d)Simamora P, Saragih C S, Hasibuan D P, et al. Mater. Today, 2018, 5(7): 14970-14974

    15. [15]

      (a) Hu H F, Yang L, Lin Z, et al. Int. J. Biol. Macromol., 2018, 114(15): 256-262
      (b)Dai Y M, Zou J Q, Liu D Y, et al. Colloids Surf. A, 2018, 550(5): 90-98

    16. [16]

      Wang Y H, Li L L, Luo C N, et al. Int. J. Biol. Macromol., 2016, 86:505-511  doi: 10.1016/j.ijbiomac.2016.01.035

    17. [17]

      Karthik R, Meenakshi S. Synth. Met., 2014, 198:181-187  doi: 10.1016/j.synthmet.2014.10.012

    18. [18]

      Chandra V, Kim K S. Chem. Commun., 2011, 47(13):3942-3944  doi: 10.1039/c1cc00005e

    19. [19]

      Wang Y Z, Wang Y S, Yan X R, et al. Chemosphere, 2016, 153:485-493  doi: 10.1016/j.chemosphere.2016.03.036

    20. [20]

      Mthombeni N H, Mbakop S, Ochieng A, et al. J. Taiwan Inst. Chem. Eng., 2016, 66:172-180  doi: 10.1016/j.jtice.2016.06.016

    21. [21]

      Gari V R D K, Min K. Monatsh. Chem., 2015, 146(9):1445-1453  doi: 10.1007/s00706-015-1429-4

    22. [22]

      Kumar V, Jahan F, Raghuwanshi S, et al. Biotechnol. Bioprocess Eng., 2013, 18:787-795  doi: 10.1007/s12257-012-0793-8

    23. [23]

      Setshedi K Z, Bhaumik M, Onyango M S, et al. Chem. Eng. J., 2015, 262:921-931  doi: 10.1016/j.cej.2014.10.034

    24. [24]

      (a) Gao F, Gu H B, Wang H W, et al. RSC Adv., 2015, 5(74): 60208-60219
      (b)Zabihi M, Ahmadpour A, Asl A H. J. Hazard. Mater., 2009, 167(1): 230-236
      (c)Wang H, Yuan X Z, Yan W, et al.Chem. Eng. J., 2015, 262(4): 597-606

    25. [25]

      (a) Huong P T, Lee B K, Kim J. Process Saf. Environ. Prot., 2016, 104: 314-322
      (b)Lu G R, Liu J M, Xiong Z H, et al. J. Chem. Eng. Data, 2016, 61(11): 3868-3876
      (c)Jia Z, Jiang M, Wu G. Chem. Eng. J., 2016, 307: 283-290
      (d)Li Y, Yang C X, Yan X P. Chem. Commun., 2017, 53(16): 2511-2514
      (e)Zhou M, Wu Y N, Qiao J, et al. J. Colloid Interface Sci., 2013, 405(9): 157-163
      (f)YANG Qing-Xiang (杨清香), REN Shuang-Shuang(任爽爽), ZHAO Qian-Qian(赵倩倩), et al. Chinese J. Inorg.Chem.(无机化学学报), 2017, 33(5): 843-852

    26. [26]

      Mthombeni N H, Mbakop S, Ochieng A, et al. J. Taiwan Inst. Chem. Eng., 2016, 66:172-180  doi: 10.1016/j.jtice.2016.06.016

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    12. [12]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    15. [15]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    19. [19]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    20. [20]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

Metrics
  • PDF Downloads(2)
  • Abstract views(339)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return