Honeycomb-like Carbon Materials Derived from Pomelo Peels for the Simultaneous Detection of Heavy Metal Ions
- Corresponding author: DU Ming-Liang, du@jiangnan.edu.cn
Citation: ZHANG Ting, MA Shi-Jie, PAN Yi, GUAN Ji-Biao, ZHANG Ming, ZHU Han, DU Ming-Liang. Honeycomb-like Carbon Materials Derived from Pomelo Peels for the Simultaneous Detection of Heavy Metal Ions[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(4): 674-686. doi: 10.11862/CJIC.2019.077
Gumpu M B, Sethuraman S, Krishnan U M, et al. Sens. Actuators B, 2015, 213:515-533
doi: 10.1016/j.snb.2015.02.122
Bansod B, Kumar T, Thakur R, et al. Biosens. Bioelectron., 2017, 94:443-455
doi: 10.1016/j.bios.2017.03.031
Aragay G, Merkoi A. Electrochim. Acta, 2012, 84:49-61
doi: 10.1016/j.electacta.2012.04.044
Fakhre N A, Ibrahim B M. J. Hazard. Mater., 2018, 343:324-331
doi: 10.1016/j.jhazmat.2017.08.043
March G, Nguyen T D, Piro B. Biosensors, 2015, 5:241-275
doi: 10.3390/bios5020241
Aranda P R, Pacheco P H, Olsina R A, et al. J. Anal. At. Spectrom., 2009, 24:1441-1445
doi: 10.1039/b903113h
Silva E L, Roldan P S, Gine M F. J. Hazard. Mater., 2009, 171:1133-1138
doi: 10.1016/j.jhazmat.2009.06.127
Pohl P. TrAC Trends Anal. Chem., 2009, 28:117-128
doi: 10.1016/j.trac.2008.09.015
Sawczak M, Kamińska A, Rabczuk G, et al. Appl. Surf. Sci., 2009, 255:5542-5545
doi: 10.1016/j.apsusc.2008.07.138
Priyadarshini E, Pradhan N. Sens. Actuators B, 2017, 238:888-902
doi: 10.1016/j.snb.2016.06.081
Li S, Xu L G, Ma W, et al. Small, 2015, 11:3435-3439
doi: 10.1002/smll.v11.28
Jamali M R, Assadi Y, Shemirani F, et al. Anal. Chim. Acta, 2006, 579:68-73
doi: 10.1016/j.aca.2006.07.006
Meucci V, Laschi S, Minunni M, et al. Talanta, 2009, 77:1143-1148
doi: 10.1016/j.talanta.2008.08.008
Alves G M S, Rocha L S, Soares H. Talanta, 2017, 175:53-68
doi: 10.1016/j.talanta.2017.06.077
Gao C, Yu X Y, Xiong S Q, et al. Anal. Chem., 2013, 85:2673-2680
doi: 10.1021/ac303143x
Wei Y, Gao C, Meng F L, et al. J. Phys. Chem. C, 2011, 116:1034-1041
Cui L, Wu J, Ju H X. Biosens. Bioelectron., 2015, 63:276-286
doi: 10.1016/j.bios.2014.07.052
Jin H Y, Wang J, Su D F, et al. J. Am. Chem. Soc., 2015, 137:2688-2694
doi: 10.1021/ja5127165
Ratso S, Kruusenberg I, Käärik M, et al. Carbon, 2017, 113:159-169
doi: 10.1016/j.carbon.2016.11.037
Zhu H, Gu L, Yu D N, et al. Energy Environ. Sci., 2017, 10:321-330
doi: 10.1039/C6EE03054H
Hu C G, Dai L M. Adv. Mater., 2017, 29:1-9
Xin W, Song Y H, Peng J F, et al. ACS Sustainable Chem. Eng., 2017, 5:2312-2319
doi: 10.1021/acssuschemeng.6b02637
Goldfarb J L, Dou G, Salari M, et al. ACS Sustainable Chem. Eng., 2017, 5:3046-3054
doi: 10.1021/acssuschemeng.6b02735
Zang Y P, Zhang H M, Zhang X, et al. Nano Res., 2016, 9:2123-2137
doi: 10.1007/s12274-016-1102-1
Wang J C, Kaskel S. J. Mater. Chem., 2012, 22:23710-23725
doi: 10.1039/c2jm34066f
Tay T, Ucar S, Karagoz S. J. Hazard. Mater., 2009, 165:481-485
doi: 10.1016/j.jhazmat.2008.10.011
Lee J, Kim J, Hyeon T. Adv. Mater., 2006, 18:2073-2094
doi: 10.1002/(ISSN)1521-4095
Dias J M, Alvim-Ferraz M C, Almeida M F, et al. J. Environ. Manage., 2007, 85:833-846
doi: 10.1016/j.jenvman.2007.07.031
Liang C D, Li Z J, Dai S. Angew. Chem. Int. Ed., 2008, 47:3696-3717
doi: 10.1002/(ISSN)1521-3773
Wang H, Yin F X, Chen B H, et al. Appl. Catal. B, 2017, 205:55-67
doi: 10.1016/j.apcatb.2016.12.016
Qu G, Jia S F, Wang H, et al. ACS Appl. Mater. Interfaces, 2016, 8:20822-20830
doi: 10.1021/acsami.6b06630
Hong K L, Qie L, Zeng R, et al. J. Mater. Chem. A, 2014, 2:12733-12738
doi: 10.1039/C4TA02068E
Yao S S, Zhi L F, Guo J, et al. Int. J. Electrochem. Sci., 2018, 13:542-550
Sudhan N, Subramani K, Karnan M, et al. Energy Fuels, 2017, 31:977-985
doi: 10.1021/acs.energyfuels.6b01829
Wang H, Min S X, Ma C, et al. Nat. Commun., 2017, 8:13592
doi: 10.1038/ncomms13592
Zhang B, Chen J D, Zhu H, et al. Electrochim. Acta, 2016, 196:422-430
doi: 10.1016/j.electacta.2016.02.163
Long C L, Chen X, Jiang L L, et al. Nano Energy, 2015, 12:141-151
doi: 10.1016/j.nanoen.2014.12.014
Wang H L, Xu Z W, Kohandehghan A, et al. ACS Nano, 2013, 7:5131-5141
doi: 10.1021/nn400731g
Li H Z, Sun Z B, Zhang L, et al. Colloids Surf. A, 2016, 489:191-199
doi: 10.1016/j.colsurfa.2015.10.041
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
Junjie Wang , Yan Wang , Zhengdong Li , Changqiang Xie , Musammir Khan , Xingzhou Peng , Fabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Gaojie Zhu , Zhen Yang , Shijun Li , Weihua Zhu , Rui Cao , Junlong Zhang , Jianzhang Zhao , Jonathan L. Sessler , Xunjin Zhu , Jianxin Song , Yongshu Xie , Jianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535
Yuqing Zhu , Haohao Chen , Li Wang , Liqun Ye , Houle Zhou , Qintian Peng , Huaiyong Zhu , Yingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Yongkang Yue , Zhou Xu , Kaiqing Ma , Fangjun Huo , Xuemei Qin , Kuanshou Zhang , Caixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Sinong Wang , Shanshan Jin , Xue Yang , Yanyan Huang , Peng Liu , Yi Tang , Yuliang Yang . Development of Mg-Al LDH and LDO as novel protective materials for deacidification of paper-based relics. Chinese Chemical Letters, 2024, 35(9): 109890-. doi: 10.1016/j.cclet.2024.109890
Ziyi Zhu , Yang Cao , Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241
Conditions: Cd2+, Pb2+ and Cu2+ concentrations: 0.5 μmol·L-1; pH value: 4.8; deposition potential:-2.1 V; room temperature; amplitude: 50 mV; increment potential: 4 mV; frequency: 15 Hz
Other experimental conditions were the same as those listed in Fig. 4
Other experimental conditions were the same as those listed in Fig. 4
All data were captured using SWASV detection of a metal ion solution containing 0.1 μmol·L-1 each of Cd2+, Pb2+ and Cu2+; Deposition time tested in Fig. 7a was 240 s, and the deposition voltage in Fig. 7b was-2.1 V; Other experimental conditions were the same as those in Fig. 4
Deposition time tested was 240 s, and the deposition voltage was-2.1 V
Experimental conditions were the same as those listed in Fig. 4
Deposition time tested was 240 s, and the deposition voltage was-2.1 V