Citation: LI Xin-Shu, WANG Qian, DING Bin. Polymorphic One-and Two-dimensional Zinc(Ⅱ) Coordination Polymers: Hydrothermal Preparation and Recyclable Photoluminescent Sensing for Picric Acid[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(3): 515-523. doi: 10.11862/CJIC.2019.057 shu

Polymorphic One-and Two-dimensional Zinc(Ⅱ) Coordination Polymers: Hydrothermal Preparation and Recyclable Photoluminescent Sensing for Picric Acid

Figures(7)

  • A semi-rigid bi-functional multi-dentate ligand 5-(4-((1H-1, 2, 4-triazol-1-yl)methyl)phenyl)-1H-tetrazole (HL) has been employed to prepare two polymorphic zinc(Ⅱ) coordination polymers, namely[Zn(μ2-L)2]n (1) and[Zn(μ2-L)2]n (2) under hydrothermal conditions. Complexes 1 and 2 present temperature induced polymorphic zinc(Ⅱ)-L 1D (1) and 2D (2) coordination frameworks. In 1, 1D left-and right-handed helical chains are inter-linked to form a 1D chain zinc(Ⅱ)-L coordination polymer. In 2, these 1D left-and right-handed helical chains are also interlinked via central zinc(Ⅱ) ions forming the two-dimensional(2D) coordination framework. The photoluminescent properties of free HL and 1~2 have been investigated, indicating strong emissions. Additionally, photoluminescent experiment also demonstrates that complex 2 exhibits highly sensitive luminescence sensing for picric acid in the aqueous solutions with high quenching efficiency (KSV=3.65×103 L·mol-1) and low detection limit (3.004 μmol·L-1, S/N=3), which make it a promising candidate for sensing picric acid.
  • 加载中
    1. [1]

      (a) Banerjee R, Phan A, Wang B, et al. Science, 2008, 319: 939-943
      (b)Zhu P P, Sun L J, Sheng N, et al. Cryst. Growth Des., 2016, 16: 3215-3223
      (c)Bijelic A, Rompel A. Acc. Chem. Res., 2017, 50: 1441-1448

    2. [2]

      (a) Anjass M H, Kastner K, Nagele F, et al. Angew. Chem. Int. Ed., 2017, 56: 14749-14752
      (b)He W W, Li S L, Zang H Y, et al. Coord. Chem. Rev., 2014, 279: 141-160
      (c)Wang X, Zhang Q, Nam C, et al. Angew. Chem. Int. Ed., 2017, 56: 11826-11829

    3. [3]

      (a) Yi X F, Izarova N V, Stuckart M, et al. J. Am. Chem. Soc., 2017, 139: 14501-14510
      (b)Bunzen H, Kolbe F, Kalytta-Mewes A, et al. J. Am. Chem. Soc., 2018, 140: 10191-10197

    4. [4]

      (a) Zhang Z M, Duan X P, Yao S, et al. Chem. Sci., 2016, 7: 4220-4229
      (b)Moran C M, Joshi J N, Marti R M, et al. J. Am. Chem. Soc., 2018, 140: 9148-9153
      (c)Yu Y, Zhang Q, Buscaglia J M. Analyst, 2016, 141: 4424-4431
      (d)Zhang Q, Kaisti M, Prabhu A, et al. Electrochim. Acta, 2017, 261: 256-264

    5. [5]

      (a) Kaisti M, Zhang Q, Levon K, et al. Sens. Actuators B, 2017, 241: 321-326
      (b)Yu Y, Zhang Q, Wang Y, et al. Analyst, 2016, 141: 5607-5617
      (c)Fu H, Qin C, Lu Y, et al. Angew. Chem. Int. Ed., 2012, 51: 7985-7989
      (d)Genovese M, Lian K. J. Mater. Chem. A, 2017, 5: 3939-3947
      (e)Gui S L, Huang Y Y, Hu F, et al. Anal. Chem., 2018, 90: 9708-9715

    6. [6]

      Du P Y, Lustig W P, Teat S J, et al. Chem. Commun., 2018, 54:8088-8091  doi: 10.1039/C8CC03496F

    7. [7]

      Hu P, Yin L, Kirchon A, et al. Inorg. Chem., 2018, 57:7006-7014  doi: 10.1021/acs.inorgchem.8b00703

    8. [8]

      (a) Naskar B, Bauza A, Frontera A, et al. Dalton Trans., 2018, 47: 15907-15916
      (b)Xu C, Huang H P, Ma J X, et al. New J. Chem., 2018, 42: 15306-15310
      (c)Yang Y, Song X R, Xu C, et al. Dalton Trans., 2018, 47: 11077-11083
      (d)Wang J, Zhang L W, Bao L, et al. Dyes Pigm., 2018, 150: 301-350
      (e)Arici M. Cryst. Growth Des., 2017, 17: 5499-5505
      (f)HuY L, Ding M L, Liu X Q, et al. Chem. Commun., 2016, 52: 5734-5737
      (g)Mostakim S K, Biswas S. CrystEngComm, 2016, 18: 3104-3113

    9. [9]

      Das P, Mandal S K. J. Mater. Chem. A, 2018, 6:16246-16256  doi: 10.1039/C8TA05070H

    10. [10]

      (a) Ding B, Liu S X, Cheng Y, et al. Inorg. Chem., 2016, 55: 4391-4402
      (b)Wang X R, Du J, Huang Z. J. Mater. Chem. B, 2018, 6: 4569-4574
      (c)Wang X R, Huang Z, Du J, et al. Inorg. Chem., 2018, 57: 12885-12899
      (d)Ding B, Zhang H M, Li X S, et al. Dyes Pigm., 2018, 159: 187-197
      (e)Cheng Y, Wu J, Guo C, et al. J. Mater. Chem. B, 2017, 5: 2524-2535
      (f)Ding B, Cheng Y, Wu J, et al. Dyes Pigm., 2017, 146: 455-466

    11. [11]

      Haasnoot J G. Coord. Chem. Rev., 2000, 200-202:131-185  doi: 10.1016/S0010-8545(00)00266-6

    12. [12]

      Li X X, Xu H Y, Kong F Z, et al. Angew. Chem. Int. Ed., 2013, 52:13769-13773  doi: 10.1002/anie.201307650

    13. [13]

      (a) Gusev A N, Nemec I, Herchel R, et al. Dalton Trans., 2014, 43: 7153-7163
      (b)Naik A D, Marchand-Brynaert J, Garcia Y. Synthesis, 2008, 1: 149-154
      (c)Mattews B R, Edward S R, Johnston B L. US Patent, BG45700A3. 1989-07-14.

    14. [14]

      Sheldrick G M. Acta Crystallogr. Sect. A:Found. Crystallogr., 2008, A64:112-122

    15. [15]

      Dolomanov O V, Bourhis L J, Gildea R J, et al. J. Appl. Crystallogr., 2009, 42:339-341  doi: 10.1107/S0021889808042726

    16. [16]

      (a) Santos-Figueroa L E, Moragues M E, Climent E, et al. Chem. Soc. Rev., 2013, 42: 3489-3613
      (b)Miao P, Wang B, Yu Z, et al. Biosens. Bioelectron., 2015, 63: 365-370

    17. [17]

      (a) Ding B, Yi L, Cheng P, et al. Inorg. Chem., 2006, 45: 5799-5803
      (b)Liu J Y, Wang Q, Zhang L J, et al. Inorg. Chem., 2014, 53: 5972-5985

    18. [18]

      Senchyk G A, Lysenko A B, Domasevitch K V, et al. Inorg. Chem., 2017, 56:12952-12966  doi: 10.1021/acs.inorgchem.7b01735

    19. [19]

      Liu W, Huang X, Xu C, et al. Chem. Eur. J., 2016, 22:18769-18776  doi: 10.1002/chem.v22.52

    20. [20]

      Xu X Y, Yan B. Adv. Funct. Mater., 2017, 27:1700247  doi: 10.1002/adfm.v27.23

    21. [21]

      Wang H, Lustig W P, Li J. Chem. Soc. Rev., 2018, 47:4729-4756  doi: 10.1039/C7CS00885F

  • 加载中
    1. [1]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    4. [4]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    5. [5]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    8. [8]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    9. [9]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    10. [10]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    11. [11]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    12. [12]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    13. [13]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    14. [14]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    15. [15]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    18. [18]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    19. [19]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    20. [20]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

Metrics
  • PDF Downloads(1)
  • Abstract views(213)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return