Citation: LÜ Hong-Jie, GAO Xin, MENG Cheng-Qi, CHENG Ting, LIU Chao, CHEN Xiao-Wei, DONG Peng-Yu, MENG Qiang-Qiang, XI Xin-Guo. Synthesis and Visible Light Photocatalytic Activity of Nitrogen-Doped TiO2/HTi2NbO7 Nanosheet Nanocomposite[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(3): 422-432. doi: 10.11862/CJIC.2019.053 shu

Synthesis and Visible Light Photocatalytic Activity of Nitrogen-Doped TiO2/HTi2NbO7 Nanosheet Nanocomposite

Figures(12)

  • The nitrogen-doped nanocomposite based on TiO2 nanoparticles and HTi2NbO7 nanosheets was success-fully synthesized by the following procedures:Layered CsTi2NbO7 was firstly prepared by high temperature solid-state method, and then treated with HNO3 solution to obtain layered HTi2NbO7 by proton-exchange reaction. The resulted layered HTi2NbO7 was well dispersed in tetrabutylammonium hydroxide (TBAOH) solution in order to prepare HTi2NbO7 nanosheets by exfoliation reaction and then freeze-dried treatment. Finally, to prepare nitrogen-doped TiO2/HTi2NbO7 nanosheets (denoted as N-TTN) nanocomposites, the mixtures of the freeze-dried HTi2NbO7 nanosheets and titanium(Ⅳ) isopropoxide were calcinated in the presence of urea as N source. The as-prepared samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoelectrochemical properties measurements, UV-Vis spectroscopy as well as N2 adsorption-desorption measurements. It was found that anatase TiO2 nanoparticles were well-distributed on the surface of HTi2NbO7 nanosheets, resulting in the formation of heterojunction structure between two components. The photocatalytic activities of samples were evaluated by the photodegradation of rhodamine B (RhB) under visible light irradiation. It indicated that the resultant N-TTN nanocomposite showed a highest photocatalytic activity toward the degradation of RhB, owing to the synergistic effects of nitrogen doping, the formation of heterojunction, increased specific surface area and rich mesoporous structure.
  • 加载中
    1. [1]

      Chen Y P, Lu C L, Xu L, et al. CrystEngComm, 2010, 12(11):3740-3747  doi: 10.1039/c000744g

    2. [2]

      Xu L, Yang X Y, Zhai Z, et al. CrystEngComm, 2011, 13(24):7267-7275  doi: 10.1039/c1ce05671a

    3. [3]

      Tan C W, Zhu G Q, Hojamberdiev M, et al. Appl. Catal. B, 2014, 152-153(1):425-436
       

    4. [4]

      Du G D, Guo Z P, Wang S Q, et al. Chem. Commun., 2010, 46(7):1106-1108  doi: 10.1039/B920277C

    5. [5]

      Linsebigler A L, Lu G Q, Yates J T. Chem. Rev., 1995, 95(3):735-758  doi: 10.1021/cr00035a013

    6. [6]

      Pelaez M, Nolan N T, Pillai S C, et al. App. Catal. B, 2012, 125(33):331-349
       

    7. [7]

      Zhang Y C, Yang M, Zhang G, et al. Appl. Catal. B, 2013, 142-143:249-258  doi: 10.1016/j.apcatb.2013.05.023

    8. [8]

      Zhang Y C, Li J, Xu H Y. Appl. Catal. B, 2012, 123-124(23):18-26
       

    9. [9]

      Wang S C, Yun J H, Luo B, et al. J. Mater. Sci. Technol., 2017, 33(1):1-22

    10. [10]

      He J, Li Q J, Tang Y, et al. Appl. Catal. A, 2012, 443-444:145-152  doi: 10.1016/j.apcata.2012.07.036

    11. [11]

      Zhang L H, Hu C H, Cheng L Y, et al. Chin. J. Catal., 2013, 34(11):2089-2097  doi: 10.1016/S1872-2067(12)60692-5

    12. [12]

      He J, Xu A D, Hu L F, et al. Powder Technol., 2015, 270:154-162  doi: 10.1016/j.powtec.2014.10.009

    13. [13]

      Zhang G H, Lin B Z, Yang W W, et al. RSC Adv., 2014, 5(8):5823-5829
       

    14. [14]

      JIANG Shao-Feng, YAO Qian-Ru, GAO Bi-Fen, et al. Chinese J. Inorg. Chem., 2015, 31(3):514-520
       

    15. [15]

      Zhai Z, Yang X Y, Xu L, et al. Nanoscale, 2012, 4(2):547-556  doi: 10.1039/C1NR11091H

    16. [16]

      Liu C, Wu L, Chen J, et al. Phys. Chem. Chem. Phys., 2014, 16(26):13409-13417  doi: 10.1039/C4CP01423E

    17. [17]

      Hervieu M, Raveau B. J. Solid State Chem., 1980, 32(2):161-165  doi: 10.1016/0022-4596(80)90562-9

    18. [18]

      Dias A S, Lima S, Carriazo D, et al. J. Catal., 2006, 244(2):230-237  doi: 10.1016/j.jcat.2006.09.010

    19. [19]

      Yang H C, Zhang S W, Cao R Y, et al. Sci. Rep., 2017, 7(1):8686-8686

    20. [20]

      HU Li-Fang, HE Jie, LIU Luan, et al. Acta Phys.-Chim. Sin., 2016, 32(3):737-744

    21. [21]

      Zhang Y J, Wang N N, He J, et al. Nano, 2016, 11(2):1813-1818

    22. [22]

      Li J, Xu L, He J, et al. Nano, 2017, 12(8):1750100  doi: 10.1142/S1793292017501004

    23. [23]

      Li J, Xu L, He J, et al. New J. Chem., 2018, 42:10279-10289  doi: 10.1039/C8NJ00877A

    24. [24]

      Zhai Z, Hu C H, Yang X Y, et al. J. Mater. Chem., 2012, 22(36):19122-19131  doi: 10.1039/c2jm32338a

    25. [25]

      Liu C, Han R, Ji H, et al. Phys. Chem. Chem. Phys., 2016, 18(2):801-810  doi: 10.1039/C5CP06555K

    26. [26]

      Hwang D W, Kim H G, Lee J S, et al. J. Phys. Chem. B, 2005, 109(6):2093-2102  doi: 10.1021/jp0493226

    27. [27]

      Okazaki Y, Mishima T, Nishimoto S, et al. Mater. Lett., 2008, 62:3337-3340  doi: 10.1016/j.matlet.2008.02.052

    28. [28]

      Wang B, Li C S, Hirabayashi D, et al. Int. J. Hydrogen Energy, 2010, 35(8):3306-3312  doi: 10.1016/j.ijhydene.2010.01.022

    29. [29]

      Gu D E, Yang B C, Hu Y D. Catal. Commun., 2008, 9(6):1472-1476  doi: 10.1016/j.catcom.2007.12.014

    30. [30]

      Liu C, Zhang C, Wang J S, et al. Mater. Lett., 2018, 217:235-238  doi: 10.1016/j.matlet.2018.01.098

    31. [31]

      Wu N Q, Wang J, Tafen D N, et al. J. Am. Chem. Soc., 2010, 132(19):6679-6685  doi: 10.1021/ja909456f

    32. [32]

      Mor G K, Varghese O K, Paulose M, et al. Sol. Energy Mater. Sol. Cells, 2006, 90(14):2011-2075  doi: 10.1016/j.solmat.2006.04.007

    33. [33]

      Ye L Q, Liu J Y, Jiang Z, et al. Nanoscale, 2013, 5(19):9391-9396  doi: 10.1039/c3nr02273k

    34. [34]

      Soni S S, Henderson M J, Bardeau J F, et al. Adv. Mater., 2008, 20:1493-1498  doi: 10.1002/(ISSN)1521-4095

    35. [35]

      Spadavecchia F, Cappelletti G, Ardizzone S, et al. Appl. Catal. B, 2010, 96:314-322  doi: 10.1016/j.apcatb.2010.02.027

    36. [36]

      Lee S H, Yamasue E, Ishihara K N, et al. Appl. Catal. B, 2010, 93:217-226  doi: 10.1016/j.apcatb.2009.09.032

    37. [37]

      Chen Z J, Lin B Z, Chen Y L, et al. J. Phys. Chem. Solids, 2010, 71(5):841-847  doi: 10.1016/j.jpcs.2010.02.011

    38. [38]

      Chen C C, Zhao W, Li J Y, et al. Environ. Sci. Technol., 2002, 36(16):3604-3611  doi: 10.1021/es0205434

  • 加载中
    1. [1]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    6. [6]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    13. [13]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    18. [18]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    19. [19]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    20. [20]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

Metrics
  • PDF Downloads(9)
  • Abstract views(758)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return