In-Situ Formed Amorphous Co Nanoparticles for Efficiently Catalytic Hydrogen Production from the Methanolysis of Ammonia Borane
- Corresponding author: LUO Shu-Ping, Luoshuping@zjut.edu
Citation: CHEN Hao, YU Zhe-Jian, XU Dan-Dan, LI Yang, WANG Ming-Ming, XIA Liang-Min, LUO Shu-Ping. In-Situ Formed Amorphous Co Nanoparticles for Efficiently Catalytic Hydrogen Production from the Methanolysis of Ammonia Borane[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(1): 141-148. doi: 10.11862/CJIC.2019.017
Esswein A J, Nocera D G. Chem. Rev., 2007, 107:4022-4047
doi: 10.1021/cr050193e
Osterloh F E. Chem. Soc. Rev., 2013, 42:2294-2320
doi: 10.1039/C2CS35266D
Yadav M, Xu Q. Energy Environ. Sci., 2012, 5:9698-9725
doi: 10.1039/c2ee22937d
Hu C G, Chen X Y, Dai Q B, et al. Nano Energy, 2017, 41:367-376
doi: 10.1016/j.nanoen.2017.09.029
Xu Y F, Mao N, Feng S, et al. Macromol. Chem. Phys., 2017, 218:1700049
doi: 10.1002/macp.v218.14
Xing Y L, Fang B Z, Bonakdarpour A, et al. Int. J. Hydrogen Energy, 2014, 39:7859-7867
doi: 10.1016/j.ijhydene.2014.03.106
Zhang H, Cai J M, Wang Y T, et al. Appl. Catal. B, 2018, 220:126-136
doi: 10.1016/j.apcatb.2017.08.046
Khalid N R, Liaqat M, Tahir M B, et al. Ceram. Int., 2018, 44:546-549
doi: 10.1016/j.ceramint.2017.09.209
Xu Y X, Chen R T, Li Z, et al. ACS Appl. Mater. Interfaces, 2017, 9:23230-23237
doi: 10.1021/acsami.7b06154
Grewe T, Meggouh M, Tüysüz H. Chem. Asian J., 2016, 11:22-42
doi: 10.1002/asia.v11.1
Sun D H, Mazumder V, MetinÖ, et al. ACS Nano, 2011, 5:6458-6464
doi: 10.1021/nn2016666
Chen W Y, Ji J, Duan X Z, et al. Chem. Commun., 2014, 50:2142-2144
doi: 10.1039/c3cc48027e
Zhang R Z, Zheng J L, Chen T W, et al. J. Alloys Compd., 2018, 763:538-545
doi: 10.1016/j.jallcom.2018.05.354
Ramachandran P V, Gagare P D. Inorg. Chem., 2007, 46:7810-7817
doi: 10.1021/ic700772a
Özhava D, Özkar S. Mol. Catal., 2017, 439:50-59
doi: 10.1016/j.mcat.2017.06.016
Cui L, Cao X Y, Sun X P, et al. ChemCatChem, 2018, 10:1-7
doi: 10.1002/cctc.v10.1
Özhava D, Özkar S. Appl. Catal. B, 2018, 237:1012-1020
doi: 10.1016/j.apcatb.2018.06.064
Karatas Y, Gülcan M, Çelebi M, et al. ChemistrySelect, 2017, 2:9628-9635
doi: 10.1002/slct.201701616
Kalidindi S B, Vernekar A A, Jagirdar B R. Phys. Chem. Chem. Phys., 2009, 11:770-775
doi: 10.1039/B814216E
Zhao B H, Liu J Y, Zhou L T, et al. Appl. Surf. Sci., 2016, 362:79-85
doi: 10.1016/j.apsusc.2015.11.205
Ke D D, Li Y, Wang J, et al. Int. J. Hydrogen Energy, 2016, 41:2564-2574
doi: 10.1016/j.ijhydene.2015.11.142
Bulut A, Yurderi M, Ertas E, et al. Appl. Catal. B, 2016, 180:121-129
doi: 10.1016/j.apcatb.2015.06.021
Ramachandran P V, Drolet M P. Tetrahedron Lett., 2018, 59:967-970
doi: 10.1016/j.tetlet.2018.01.041
Korytiaková E, Thiel N O, Pape F, et al. Chem. Commun., 2017, 53:732-735
doi: 10.1039/C6CC09067B
Fu S M, Chen N Y, Liu X F, et al. J. Am. Chem. Soc., 2016, 138:8588-8594
doi: 10.1021/jacs.6b04271
Chandra M, Xu Q. J. Power Sources, 2007, 168:135-142
doi: 10.1016/j.jpowsour.2007.03.015
Chen W Y, Ji J, Feng X, et al. J. Am. Chem. Soc., 2014, 136:16736-16739
doi: 10.1021/ja509778y
Luo S P, Mejia E, Friedrich A, et al. Angew. Chem. Int. Ed., 2013, 52:419-423
doi: 10.1002/anie.201205915
Paine R T, Narula C K. Chem. Rev., 1990, 90:73-91
doi: 10.1021/cr00099a004
Yu J, Bai H B, Wang J, et al. New J. Chem., 2013, 37:366-372
doi: 10.1039/C2NJ40514H
Surviliene S. Solid State Ionics, 2008, 179:222-227
doi: 10.1016/j.ssi.2007.12.052
Dai H B, Kang X D, Wang P. Int. J. Hydrogen Energy, 2010, 35:10317-10323
doi: 10.1016/j.ijhydene.2010.07.164
Qiu X Q, Wu X, Wu Y W, et al. RSC Adv., 2016, 6:106211-106217
doi: 10.1039/C6RA24000C
Sun D H, Mazumder V, MetinÖ, et al. ACS Catal., 2012, 2:1290-1295
doi: 10.1021/cs300211y
Filiz B C, Figen A K, Piskin S. Appl. Catal. A, 2018, 550:320-330
doi: 10.1016/j.apcata.2017.11.022
Cao S W, Jiang J, Zhu B C, et al. Phys. Chem. Chem. Phys., 2016, 18:19457-19463
doi: 10.1039/C6CP02832B
Liu S, Li Y, Shen W J. Chin. J. Catal., 2015, 36:1409-1418
doi: 10.1016/S1872-2067(15)60932-9
Li Y, Dai Y, Tian X K. Int. J. Hydrogen Energy, 2015, 40:9235-9243
doi: 10.1016/j.ijhydene.2015.05.172
Metin Ö, Özkar S. Energy Fuels, 2009, 23:3517-3526
doi: 10.1021/ef900171t
Xu Q, Chandra M. J. Power Sources, 2006, 163:364-370
doi: 10.1016/j.jpowsour.2006.09.043
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Luyan Shi , Ke Zhu , Yuting Yang , Qinrui Liang , Qimin Peng , Shuqing Zhou , Tayirjan Taylor Isimjan , Xiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Yan-Li Li , Zhi-Ming Li , Kai-Kai Wang , Xiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322
Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
Sajid Mahmood , Haiyan Wang , Fang Chen , Yijun Zhong , Yong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550
Chunqing Ou , Meijia Xiao , Xinyue Zheng , Xianzhou Huang , Suleixin Yang , Yingying Leng , Xiaowei Liu , Xiuqi Liang , Linjiang Song , Yanjie You , Shaohua Yao , Changyang Gong . Programmable double-unlock nanocomplex self-supplies phenylalanine ammonia-lyase for precise phenylalanine deprivation of tumors. Chinese Chemical Letters, 2024, 35(8): 109275-. doi: 10.1016/j.cclet.2023.109275
Xue Zhao , Mengshan Chen , Dan Wang , Haoran Zhang , Guangzhi Hu , Yingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
k0 and k are the reaction rate constant, Ea is the activation energy for the reaction, R is the gas constant and T is the reaction temperature