Citation: LI Guo-Hui, SUN Yuan-Yuan, XING Hua-Long, ZHENG Jian-Cong, LIN Chen-Chen, SUN Zhen-Fan. One-Pot Synthesis of Rose-like Ce-Doped SnS2 with Enhanced Visible-Light Photocatalytic Property for Reduction of Cr(Ⅵ)[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(2): 194-202. doi: 10.11862/CJIC.2019.006 shu

One-Pot Synthesis of Rose-like Ce-Doped SnS2 with Enhanced Visible-Light Photocatalytic Property for Reduction of Cr(Ⅵ)

Figures(13)

  • The Ce-doped SnS2 samples were prepared successfully through a one-pot hydrothermal method under mild conditions. The as-prepared SnS2 samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with Energy dispersive X-ray Spectroscopy (EDS) which confirmed the doping of Ce. The results indicated the spiral growth mode and rose-like morphology of the samples. The effects of Ce doping on the photoabsorption, band gap, the potential of conduction band and the separation efficiency of photo-induced carriers were checked by diffuse reflectance spectrum (DRS) and electrochemical examinations. The reductive abilities of the samples were evaluated by the reduction of Cr(Ⅵ) chosen as a model pollutant. The results reveal that photocatalytic properties of Ce/SnS2 were strongly dependent on the proportion of Ce ions and the optimum doping amount of Ce is 5% (n/n).
  • 加载中
    1. [1]

      Chai L Y, Huang S H, Yang Z H, et al. J. Hazard. Mater., 2009, 167:516-522  doi: 10.1016/j.jhazmat.2009.01.030

    2. [2]

      Zhang Y C, Li J, Zhang M, et al. Environ. Sci. Technol., 2011, 45:9324-9331  doi: 10.1021/es202012b

    3. [3]

      Liu W, Chaspoul F, Lefranc D B, et al. J. Therm. Anal. Calorim., 2007, 89:21-24  doi: 10.1007/s10973-006-7918-2

    4. [4]

      Barrera C E. J. Hazard. Mater., 2012, 223-224:1-12
       

    5. [5]

      Ma H L, Zhang Y, Hu Q H, et al. J. Mater. Chem., 2012, 22:5914-5916
       

    6. [6]

      Cai Z J, Song X Y, Zhang Q, et al. J. Mater. Sci., 2017, 52:5417-5434

    7. [7]

      Marinho B A, Cristóvo R O, Djellabi R, et al. Appl. Catal., B, 2017, 203:18-30

    8. [8]

      Liu W, Ni J, Yin X C. Water Res., 2014, 53:12-25
       

    9. [9]

      Bencheikhlatmani R, Obraztsova A, Mackey M R, et al. Environ. Sci. Technol., 2007, 41:214-220

    10. [10]

      Pan X H, Liu Z J, Chen Z, et al. Water Res., 2014, 55:21-29
       

    11. [11]

      Sundar K, Mukherjee A, Sadiq M, et al. J. Hazard. Mater., 2011, 187:553-561
       

    12. [12]

      Kush P, Deori K, Kumar A, et al. J. Mater. Chem. A, 2015, 3:8098-8106
       

    13. [13]

      Zhang Y C, Yao L, Zhang G S, et al. Appl. Catal., B, 2014, 144:730-738
       

    14. [14]

      Wang L, Wang N, Zhu L, et al. J. Hazard. Mater., 2008, 152:93-99
       

    15. [15]

      Yang M, Zhang Y C, Dai W M, et al. Key Eng. Mater., 2013, 538:46-49
       

    16. [16]

      Makama A B, Salmiaton A, Saion E B, et al. Bull. Chem. React. Eng. Catal., 2017, 12:62-70

    17. [17]

      Nanda B, Pradhan A C, Parida K M. Chem. Eng. J., 2017, 316:1122-1135

    18. [18]

      Cai L, Xiong X L, Liang N G, et al. Appl. Surf. Sci., 2015, 353:939-948
       

    19. [19]

      Liu J L, Zhao Y R, Ma J Z, et al. Ceram. Int., 2016, 42:15968-15974
       

    20. [20]

      Yang W L, Liu Y, Hu Y, et al. J. Mater. Chem., 2012, 22:13895-13898
       

    21. [21]

      Wang J C, Ren J, Yao H C, et al. J. Hazard. Mater., 2016, 311:11-19
       

    22. [22]

      Zhang Y C, Zhang Q, Shi Q W, et al. Sep. Purif. Technol., 2015, 142:251-257  doi: 10.1016/j.seppur.2014.12.041

    23. [23]

      Xie B P, Zhang H X, Cai P X, et al. Chemosphere, 2006, 63:956-963
       

    24. [24]

      Han J L, Zhu G Q, Hojamberdiev M, et al. New J. Chem., 2014, 39:1874-1882
       

    25. [25]

      Rauf A, Shah M S A S, Choi G H, et al. ACS Sustainable Chem. Eng., 2015, 3:2847-2855
       

    26. [26]

      Qu J F, Chen D Y, Li N J, et al. Appl. Catal., B, 2017, 207:404-411

    27. [27]

      Padhi D, Parida K. J. Mater. Chem. A, 2014, 2:10300-10312

    28. [28]

      Pan X H, Liu Z J, Chen Z, et al. Water Res., 2014, 55:21-29
       

    29. [29]

      Kiruthigaa G, Manoharan C, Bououdina M, et al. Solid State Sci., 2015, 44:32-38
       

    30. [30]

      Park S, Selvaraj R, Meetani M A, et al. J. Ind. Eng. Chem., 2017, 45:206-214

    31. [31]

      Sun L L, Zhou W, Liu Y Y, et al. Appl. Surf. Sci., 2016, 389:484-490

    32. [32]

      Shown I, Samireddi S, Chang Y C, et al. Nat. Commun., 2018, 9:169-178

    33. [33]

      An X, Yu J C, Tang J. J. Mater. Chem. A, 2013, 2:1000-1005
       

    34. [34]

      Idris A, Hassan N, Rashid R, et al. J. Hazard. Mater., 2010, 186:1683-1688
       

    35. [35]

      Lei Y Q, Song S Y, Fan W Q, et al. J. Phys. Chem. C, 2009, 113:1280-1285  doi: 10.1021/jp8079974

    36. [36]

      Butler M A. J. Appl. Phys., 1977, 48:1914-1920
       

    37. [37]

      Fu X, Ilanchezhiyan P, Mohan K G, et al. Nanoscale, 2017, 9:1820
       

    38. [38]

      Hoffmann M R, Choi W, Bahnemann D W. Chem. Rev., 1995, 95:69-96  doi: 10.1021/cr00033a004

    39. [39]

      Sun Y Y, Li G H, Xu J, et al. Mater. Lett., 2016, 174:238-241

    40. [40]

      Mondal C, Ganguly M, Pal J, et al. Langmuir, 2014, 30:4157-4164  doi: 10.1021/la500509c

    41. [41]

      Tu J R, Shi X F, Lu H W, et al. Mater. Lett., 2016, 185:303-306  doi: 10.1016/j.matlet.2016.09.002

  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    3. [3]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    4. [4]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    5. [5]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    9. [9]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    10. [10]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    15. [15]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    16. [16]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    17. [17]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    18. [18]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    19. [19]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    20. [20]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

Metrics
  • PDF Downloads(5)
  • Abstract views(838)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return