Citation: LIU Yuan-Yuan, LI Xin Shu, ZHANG Hui-Min, DING Bin. Three Polyoxometalate-Based Cu(Ⅱ) and Cu(Ⅰ) Coordination Polymers with Mono-and Bis-triazole Derivatives: Hydrothermal Assembly and Photocatalytic Properties[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(12): 2280-2290. doi: 10.11862/CJIC.2018.274 shu

Three Polyoxometalate-Based Cu(Ⅱ) and Cu(Ⅰ) Coordination Polymers with Mono-and Bis-triazole Derivatives: Hydrothermal Assembly and Photocatalytic Properties

  • Corresponding author: LIU Yuan-Yuan, hxxylyy@mail.tjnu.edu.cn
  • Received Date: 6 August 2018
    Revised Date: 26 September 2018

Figures(12)

  • Three novel polyoxometalate (POM)-based Cu(Ⅱ) and Cu(Ⅰ) hybrid materials with multi-dentate mono-and bis-triazole derivatives, namely {[Cu(L1)2(Mo4O13)]·2H2O}n (1), {[Cu1.5(L2)(HL2)(H2O)(Mo4O13)]·2H2O}n (2), {[Cu2(L3)1.5(Mo4O13)]·H2O}n (3) (L1=4-pyridine-2-1, 2, 4-triazole, HL2=3-(4H-1, 2, 4-triazol-4-yl) benzoic acid, L3=trans-4, 4'-azo-1, 2, 4-triazole) have been designed and synthesized by hydrothermal method. The structures of 1~3 have been determined by single crystal X-ray diffraction, FT-IR infrared spectra and powder X-ray diffraction analyses. In 1, Mo4O132- anions and Cu(Ⅱ) centers are inter-linked by bidentate L1, which are arranged into 2D POMs-based Cu(Ⅱ) hybrid metal-organic framework. In 2, Mo4O132- anions and Cu(Ⅱ) centers are inter-linked via bridging aqua atoms (O18), bi-dentate HL2 and tri-dentate L2-, which are arranged into 3D POM-based Cu(Ⅱ) micro-porous metal-organic framework. In 3, L3 ligands bridge neighboring Cu(Ⅰ) centers and Mo4O132- anions, which ultimately forms unique two-fold interpenetrating 3D POM-based Cu(Ⅰ) hybrid coordination framework. Photocatalytic activities for decomposition of different organic dyes of rhodamine B (RhB), methylene blue (MB) and methyl orange (MO) have been investigated for 1~3, indicating that 1~3 are good candidates for photocatalytic degradation of the organic dyes.
  • 加载中
    1. [1]

      (a) Banerjee R, Phan A, Wang B, et al. Science, 2008, 319: 939-943
      (b) Zhu P P, Sun L J, Sheng N, et al. Cryst. Growth Des., 2016, 16: 3215-3223
      (c) Bijelic A, Rompel A. Acc. Chem. Res., 2017, 50: 1441-1448

    2. [2]

      (a) Anjass M H, Kastner K, Nagele F, et al. Angew. Chem. Int. Ed., 2017, 56: 14749-14752
      (b) He W W, Li S L, Zang H Y, et al. Coord. Chem. Rev., 2014, 279: 141-160
      (c) Wang X, Zhang Q, Nam C, et al. Angew. Chem. Int. Ed., 2017, 56: 11826-11829

    3. [3]

      (a) Yi X F, Izarova N V, Stuckart M, et al. J. Am. Chem. Soc., 2017, 139: 14501-14510
      (b) Liu Y P, Zhao S F, Guo S X, et al. J. Am. Chem. Soc., 2016, 138: 2617-2628

    4. [4]

      (a) Yu Y, Zhang Q, Buscaglia J M. Analyst, 2016, 141: 4424-4431
      (b) Zhang Q, Kaisti M, Prabhu A, et al. Electrochim. Acta, 2017, 261: 256-264
      (c) Zhang Z M, Duan X P, Yao S, et al. Chem. Sci., 2016, 7: 4220-4229
      (d) Liu R J, Zhang G J, Cao H B, et al. Energy Environ. Sci., 2016, 9: 1012-1023

    5. [5]

      (a) Kaisti M, Zhang Q, Levon K, et al. Sens. Actuators B: Chem., 2017, 241: 321-326
      (b) Yu Y, Zhang Q, Wang Y, et al. Analyst, 2016, 141: 5607-5617
      (c) Fu H, Qin C, Lu Y, et al. Angew. Chem. Int. Ed., 2012, 51: 7985-7989
      (d) Genovese M, Lian K. J. Mater. Chem. A, 2017, 5: 3939-3947

    6. [6]

      (a) Wei X, Panindre P, Zhang Q, et al. ACS Sens., 2016, 1: 862-865
      (b) Zhu S L, Xu X, Ou S, et al. Inorg. Chem., 2016, 55: 7295-7300
      (c) Xin X, Tian X R, Yu H T, et al. Inorg. Chem., 2018, 57: 11474-11481
      (d) Li X X, Zhang L J, Cui C Y, et al. Inorg. Chem., 2018, 57: 10323-10330

    7. [7]

      (a) Chen L Y, Luque R, Li Y W, et al. Chem. Soc. Rev., 2017, 46: 4614-4630
      (b) Bennett J W, Bjorklund J L, Forbes T Z, et al. Inorg. Chem., 2017, 56: 13014-13028
      (c) Lysenko A B, Bondar O A, Senchyk G A, et al. Inorg. Chem., 2018, 57: 6076-6083

    8. [8]

      Zhu P P, Sun L J, Sheng N, et al. Cryst. Growth Des., 2016, 16:3215-3223  doi: 10.1021/acs.cgd.6b00119

    9. [9]

      Li X X, Wang Y X, Wang R H, et al. Angew. Chem. Int. Ed., 2016, 55:6462-6466  doi: 10.1002/anie.201602087

    10. [10]

      Haasnoot J G. Coord. Chem. Rev., 2000, 200-202:131-185  doi: 10.1016/S0010-8545(00)00266-6

    11. [11]

      Li X X, Xu H Y, Kong F Z, et al. Angew. Chem. Int. Ed., 2013, 52:13769-13773  doi: 10.1002/anie.201307650

    12. [12]

      Zhu P P, Sheng N, Li M T, et al. J. Mater. Chem. A, 2017, 5:17920-17925  doi: 10.1039/C7TA05254E

    13. [13]

      (a) Ding B, Yi L, Cheng P, et al. Inorg. Chem., 2006, 45: 5799-5803
      (b) Ding B, Liu S X, Cheng Y, et al. Inorg. Chem., 2016, 55: 4391-4402

    14. [14]

      Liu J Y, Wang Q, Zhang L J, et al. Inorg. Chem., 2014, 53:5972-5985  doi: 10.1021/ic500183b

    15. [15]

      Wang Y, Yuan B, Xu Y Y, et al. Chem. Eur. J., 2015, 21:2107-2116  doi: 10.1002/chem.v21.5

    16. [16]

      (a) Cheng Y, Wu J, Guo C, et al. J. Mater. Chem. B, 2017, 5: 2524-2535
      (b) Wang X R, Du J, Huang Z, et al. J. Mater. Chem. B, 2018, 6: 4569-4574

    17. [17]

      (a) Gusev A N, Nemec I, Herchel R, et al. Dalton Trans., 2014, 43: 7153-7163
      (b) Naik A D, Marchand-Brynaert J, Garcia Y. Synthesis, 2008, 1: 149-154

    18. [18]

      Sheldrick G M. SHELXS-97, Program for X-ray Crystal Structure Solution, University of Göttingen, Germany, 1997.

    19. [19]

      Sheldrick G M. SHELXL-97, Program for X-ray Crystal Structure Refinement, University of Göttingen, Germany, 1997.

    20. [20]

      Spek A L. J. Appl. Crystallogr., 2003, 36:7-13  doi: 10.1107/S0021889802022112

    21. [21]

      Senchyk G A, Lysenko A B, Domasevitch K V, et al. Inorg. Chem., 2017, 56:12952-12966  doi: 10.1021/acs.inorgchem.7b01735

    22. [22]

      Fiher M E. Am. J. Phys., 1964, 32:343-345  doi: 10.1119/1.1970340

    23. [23]

      Wang X L, Gong C H, Zhang J W, et al. CrystEngComm, 2015, 17:4179-4189  doi: 10.1039/C5CE00411J

    24. [24]

      (a) Cui J W, An W J, Kristof Van H, et al. Dalton Trans., 2016, 45: 17474-17484
      (b) Jia C, Xie X W, Ge M, et al. Mater. Sci. Semicond. Process., 2015, 36: 71-77

    25. [25]

      Dolbecq A, Mialane P, Keita B, et al. J. Mater. Chem., 2012, 22:24509-24521  doi: 10.1039/c2jm33246a

    26. [26]

      (a) Zhang Q, Khajo A, Sai T, et al. J. Phys. Chem. A, 2012, 116: 7629-7635
      (b) Hu J M, Blatov V A, Yu B Y, et al. Dalton Trans., 2016, 45: 2426-2429

    27. [27]

      Meng X M, Fan C B, Bi C F, et al. CrystEngComm, 2016, 18:2901-2912  doi: 10.1039/C5CE02473K

  • 加载中
    1. [1]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    2. [2]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    3. [3]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    4. [4]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    5. [5]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    6. [6]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    7. [7]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    8. [8]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    9. [9]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    14. [14]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    15. [15]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    16. [16]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    17. [17]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    18. [18]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    19. [19]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    20. [20]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

Metrics
  • PDF Downloads(1)
  • Abstract views(456)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return