Citation: YANG Li-Guo, WANG Fang, YU You-Zhu, WANG Xin, ZHANG Yong-Hui, YANG Hua, WANG Da-Qi, LI Da-Cheng. Sandwich-Type Tb and Dy Complexes with Schiff-Base Ligand: Syntheses, Crystal Structures and Magnetic Properties[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(10): 1891-1898. doi: 10.11862/CJIC.2018.235 shu

Sandwich-Type Tb and Dy Complexes with Schiff-Base Ligand: Syntheses, Crystal Structures and Magnetic Properties

  • Corresponding author: YANG Li-Guo, lgyang@ayit.edu.cn
  • Received Date: 15 May 2018
    Revised Date: 14 July 2018

Figures(8)

  • Two new sandwich-type di-lanthanide complexes[M2L3(H2O)] (M=Tb (1), Dy (2), H2L=N, N'-bis(4-methyloxysalicylidene)benzene-1, 2-diamine) were synthesized by treating the Schiff-base ligand with M(acac)3·6H2O (M=Tb, Dy) and characterized by elemental analysis, IR spectra and X-ray single crystal diffraction. X-ray single crystal diffraction analysis reveals that 1 and 2 have a similar new triple-deck dinuclear sandwich structure. The magnetic measurements of complexes 1 and 2 indicated that 1 and 2 exhibit the antiferromagnetic interactions between lanthanide ions, and field-induced slow magnetic relaxation. The deduced effective energy barrier (Ueff) and relaxation time (τ0) are 35.45 cm-1 and 2.7×10-10 s for 2.
  • 光催化作为解决环境和能源危机最有前景的技术之一,能够将低密度的太阳能转化为高密度的化学能,并且能够通过光催化反应分解各种污染物[1-3]。相比传统用于水污染治理的技术,如吸附、生物降解以及高温焚烧等,光催化具有价格低廉、不产生二次污染、反应条件温和等优势[5-9]。近年来,由特定的[Bi2O2]2+层和互层离子或基团组成的氯氧化铋(BiOCl)具有的化学稳定性、独特的层结构和易于合成的特点使其备受关注[10],但其带隙能宽(约3.5 eV),只有在紫外光(λ < 400 nm)条件下才能被激发,限制了其应用[11-16]。因此,如何提高BiOCl的可见光吸收范围成为研究的难点与热点。

    光催化材料的能带结构决定了其光吸收波长范围,通过引入氧空位(OV)可以有效调控能隙带宽与电子-空穴的分离效率,从而提高材料在可见光范围内的催化效率[17-18]。研究表明含有丰富OV的BiOCl纳米片在高达500 nm的波长下表现出出色的全氟辛酸(PFOA)降解率。随着制备过程中碱源的改变,BiOCl纳米片中OV的比例从0.573增加到0.981,BiOCl对PFOA降解和脱氟的光催化性能提高了3~4倍[19]

    由于玻璃采用高温-淬冷方法,保留了高温阶段的无定形结构,该结构中存在大量的非桥氧;铋玻璃相比硅玻璃具有更长的Bi—O键,因此具有更加松散的网络结构,可能形成的OV也更多。基于这个思路,我们以铋玻璃作为铋源,初次通过直接的盐酸腐蚀法将玻璃中的氧缺陷引入到BiOCl材料。并且通过添加不同网络外体组分,研究玻璃网络结构的破坏对BiOCl材料的OV浓度的影响。

    试剂包括氧化铋(中国医药集团有限公司)、硼酸(BOR Mining Chemical Company,俄罗斯)、氧化锌(安徽省黄山县锦华氧化锌厂)、碳酸锶(上海红蝶化工有限公司)、碳酸钠(上海欧金实业有限公司)和盐酸(阿拉丁)。

    我们在Bi2O3-B2O3-ZnO (BBZ)玻璃的基础上加入了2种网络外体SrO和Na2O组分,原料分别来源于Na2CO3和SrCO3,玻璃组成设计如表 1所示。

    表 1

    表 1  铋玻璃的主要成份及含量
    Table 1.  Main components and contents of bismuth glasses
    下载: 导出CSV
    Sample Molar fraction/%
    Bi2O3 B2O3 ZnO SrO Na2O
    BBZ 40 30 30
    BBZSr 40 30 20 10
    BBZSN 40 30 10 10 10

    铋玻璃的制备采用传统的熔融淬冷方法。分别称取表 1中各组分对应的原料,在球磨机上混合均匀后900 ℃熔融45 min得到均匀玻璃液,然后再进行急冷得到玻璃碎片,研磨玻璃碎片得到铋玻璃粉。

    采用一步的酸腐蚀法制备BiOCl材料。分别将5 g BBZ、BBZSr和BBZSN玻璃粉加入100 mL 6% 的HCl溶液中搅拌2 h得到产物。将所得产物用蒸馏水和乙醇洗涤数次,100 ℃干燥过夜,分别制得BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN粉体。

    通过X射线粉末衍射仪(XRD,德国,Bruker D8 ADVANCE)对样品进行物相分析,电压40 kV,电流40 mA,扫描范围10° ~80° (2θ),靶材Cu Kα,波长0.154 06 nm。通过FEIVeriosG4型扫描电子显微镜(SEM,工作电压3.0 kV)及JEM-2010型透射电子显微镜(TEM,工作电压200 kV)观察样品的微观形貌。采用傅里叶变换红外光谱仪(FT-IR)和拉曼光谱仪(Raman)表征材料的化学组分。通过紫外可见光谱仪(Shimadzu UV-3600)测定样品的紫外可见漫反射(UV-Vis DRS)谱图,扫描范围为300~800 nm。通过电子顺磁共振(EPR)对材料光激发下的活性基团进行表征。使用荧光光谱仪(PL,FLS980)对材料进行光致发光测试。

    通过RhB(10 mg·L-1)在紫外光和可见光照射下的光催化分解实验来评估BiOCl材料的光催化活性。使用具有400 nm截止滤光片和200~400 nm石英滤光片的300 W氙灯分别获得可见光和紫外光。在光催化实验中,将10 mg BiOCl光催化剂加入100 mL RhB溶液中并置于暗处搅拌,达到吸附-脱附平衡后再进行照射。在给定时间后,取3 mL混合物离心以除去BiOCl材料。根据RhB在553 nm处的吸光度[20-22],通过紫外分光光度计分析确定RhB浓度。

    图 1a可知,所有铋玻璃的XRD图呈现出显著的玻璃衍射特征,表明所制备的玻璃成玻性良好。从图 1b的铋玻璃的FT-IR谱图可知,玻璃的吸收峰出现在520、710、920、1 000、1 180和1 280 cm-1附近,其中,710 cm-1处的吸收峰强度随玻璃组分的增加不断增大,表明[BO4]四面体逐渐转变为[BO3]三角体[23]。另外,从拉曼光谱(图 1c)中可以看出,铋玻璃的特征峰主要集中在128、416、583、722、924、1 250 cm-1。从BBZ玻璃到BBZSN玻璃,416和583 cm-1处的峰强度明显增强,表明[BiO6]八面体向[BiO3]三角体转变[24]。结合红外光谱和拉曼光谱分析,引入SrO和Na2O作为玻璃网络外体氧化物,增加了玻璃体系游离氧的含量,使玻璃的结构更松散,加入的网络外体更多,玻璃的结构破坏就越严重。因此,与BBZ和BBZSr玻璃相比,BBZSN具有最松散的网络结构,可能引起的氧缺陷也更多。

    图 1

    图 1.  所制备的铋玻璃(a) XRD图、(b)FT-IR谱图和(c) Raman谱图
    Figure 1.  (a) XRD patterns, (b) FT-IR spectra, and (c) Raman spectra of as-prepared bismuth glasses

    SEM图显示了所制备的BiOCl光催化剂都呈现出纳米片形状,由基础玻璃BBZ合成的BiOCl-BBZ材料具有较大的片层结构(图 2a),在引入SrO后,BiOCl-BBZSr则呈现不规则的团聚结构(图 2b),在随后的网络外体Na2O的添加,更大程度地对玻璃的骨架结构进行破坏,使得所制备的BiOCl-BBZSN材料具有更小的纳米碎片团聚结构(图 2c)。

    图 2

    图 2.  (a) BiOCl-BBZ、(b) BiOCl-BBZSr和(c) BiOCl-BBZSN光催化剂的SEM图
    Figure 2.  SEM images of (a) BiOCl-BBZ, (b) BiOCl-BBZSr, and (c) BiOCl-BBZSN photocatalysts

    通过XRD分析确认样品的相纯度和结晶度,结果如图 3所示。由图可知,所有样品的XRD峰均可以很好地对应四方相BiOCl(PDF No.06-0249),晶格参数a=0.389 1 nm和c=0.736 9 nm。图中未观察到杂质峰,表明所制备的样品纯度高。

    图 3

    图 3.  所制备的BiOCl光催化剂的XRD图
    Figure 3.  XRD patterns of as-prepared BiOCl photocatalysts

    为了进一步了解样品的微观结构,我们对BiOCl-BBZSN进行了TEM分析,如图 4a所示。高分辨率透射电子显微镜(HRTEM,图 4b)揭示了纳米片的高度结晶性和清晰的晶格条纹,晶格间距为0.275 nm,对应BiOCl(110)面。插图中的选区电子衍射(SAED)图案中标出的2组相邻点之间的夹角为45°,与BiOCl光催化剂的(100)和(110)晶面夹角的理论值一致[25-26],可以索引到[001]区域轴,表明BiOCl-BBZSN的暴露面是(001)面。

    图 4

    图 4.  BiOCl-BBZSN的(a) TEM图和(b) HRTEM图
    Figure 4.  (a) TEM image and (b) HRTEM image of BiOCl-BBZSN

    Inset in b: SAED pattern

    为了探索BiOCl光催化剂中OV的存在,对其进行了EPR测试。图 5a5c显示了由3种不同的铋玻璃制备的BiOCl光催化剂的OV。其中,BiOCl-BBZSN在黑暗和可见光照条件下都表现出最强的OV信号。此外,比较了BiOCl-BBZSN光催化剂在黑暗和光照条件下的差异,如图 5b所示,其OV信号没有显著变化,表明OV大部分来源于光催化材料本身。为了进一步探索BiOCl光催化剂OV的来源,我们还对原始铋玻璃进行了OV表征,如图 5d所示,3种铋玻璃在黑暗条件下g=2.003处也显示出强氧信号,证明制备的BiOCl光催化剂通过简单的一步化学反应方法保留了玻璃中的氧缺陷。不难看出,BBZSN玻璃具有最强的OV信号,这可能是其松散的网络结构导致了更多的氧缺陷,这也是BBZSN玻璃制备的BiOCl-BBZSN光催化剂OV浓度最高的原因。另外,对盐酸刻蚀前后的BBZSN玻璃和BiOCl-BBZSN的氧缺陷浓度进行对比分析发现(图 5e),在黑暗条件下,BiOCl材料的OV峰强几乎与原始铋玻璃的相同,这进一步表明BiOCl-BBZSN材料的OV由BBZSN玻璃原位引入。

    图 5

    图 5.  样品在黑暗和可见光照下的EPR谱图
    Figure 5.  EPR spectra of the samples under dark and visible light

    众所周知,OV的作用之一是调节光催化的带隙结构[27-28]图 6a显示了所制备的BiOCl光催化的吸收边与BiOCl-BBZ、BiOCl-BBZSr相比,BiOCl-BBZSN的吸收带边缘发生红移现象。图 6b显示了BiOCl光催化剂带隙能(Eg)的变化。值得注意的是,BiOCl-BBZSN的带隙能(2.95 eV)比其他2个样品更窄,表明OV的存在可以降低带隙值以吸收更多可见光。为了进一步显示光催化材料的导带和价带的位置,采用VB-XPS测试所制备样品的VB(价带)状态总密度。由图 6c可知,所得的BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN的价带位置(EVB)分别为2.49、2.62和2.72 eV,另外通过公式:ECB=Eg-EVB计算了光催化材料的导带位置(ECB),光催化材料的能带结构如图 6d所示。光催化剂在降解染料的过程中需要超氧自由基(·O2-)、羟基自由基(·OH)和空穴等活性物质,而价带位置越低,氧化性越强,越有利于活性基团的产生和对染料的氧化[29]。BiOCl-BBZSN材料具有比其他2个样品更低的价带位置,因此可以产生更多的氧活性物质,提高其降解RhB染料的能力。

    图 6

    图 6.  样品的(a) UV-Vis漫反射光谱、(b) (αhν)1/2 vs 曲线、(c) VB-XPS谱图和(d) 带隙结构
    Figure 6.  (a) UV-Vis diffuse reflectance spectra, (b) curves of (αhν)1/2 vs , (c) VB-XPS spectra, and (d) band gap structures of the samples

    通过降解实验进一步研究了OV对光催化性能的影响。暗箱处理30 min以测试样品对染料的吸附能力,如图 7所示,BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN对染料的吸附率分别为7.12%、8.23%和12.35%。在紫外光照射下,BiOCl-BBZSN、BiOCl-BBZSr和BiOCl-BBZ的RhB降解率分别达到95.7% (35 min)、95.3%(40 min)和93.5%(60 min),表明OV对可见光下光催化材料的降解有较大影响。所制备的BiOCl在可见光下仍具有对RhB染料的降解能力,这可部分归因于染料敏化作用。在可见光下照射100 min时,BiOCl-BBZSN的降解率可达到93.1%,而BiOCl-BBZ和BiOCl-BBZSr分别只有72.3% 和54.4%,这可归因于丰富的OV调整了带隙,增强了材料对可见光的吸收。此外,对不添加光催化剂的RhB染料进行光降解实验发现,在紫外和可见光下染料的浓度没有明显的变化,说明染料的降解是源于样品的光降解作用。OV作为捕获电子的活性位点,O2和H2O分子可以在OV处与光生电子反应产生活性氧(ROS)。如图 8a8b所示,在可见光照下观察到的EPR信号对应DMPO-·O2-和DMPO-·OH,其中BiOCl-BBZSN的ROS(·O2-、·OH)浓度最高,进一步说明BiOCl-BBZSN具有最好的光催化性能。

    图 7

    图 7.  BiOCl光催化剂在(a) 紫外光和(b) 可见光下的光催化活性
    Figure 7.  Photocatalytic activities of as-prepared BiOCl photocatalysts under (a) ultraviolet light and (b) visible light

    图 8

    图 8.  所制备BiOCl的(a) DMPO-·O2-和(b) DMPO-·OH的EPR谱图
    Figure 8.  EPR spectra of (a) DMPO-·O2- and (b) DMPO-·OH of as-prepared BiOCl

    光诱导载流子的分离和迁移效率是光催化降解的重要因素,其主要通过瞬态光电流响应(I-t)、电化学阻抗(EIS)和光致发光光谱(PL)表征。一般认为光电流密度越高,电子-空穴对分离效率越高[30]。通过考察不同催化剂在可见光照条件下产生的光电流强度,间接说明催化剂的载流子分离效率。实验结果如图 9a所示,BiOCl-BBZSN作为光电极所产生的光电流强度约为0.2 μA·cm-2,分别约为BiOCl-BBZSr和BiOCl-BBZ的2倍和6倍。这些研究结果进一步说明了富氧空位的引入提高了BiOCl-BBZSN中光生载流子的分离迁移效率,有助于光催化活性的提高。此外,由图 9b可知,与BiOCl-BBZ和BiOCl-BBZSr光催化剂相比,BiOCl-BBZSN具有更小的EIS半径,这意味着载流子迁移到表面的阻力更小。另外,使用PL谱图来确认电荷复合率(图 9c),较低的PL强度和较长的寿命与较低的电荷载流子复合率有关。BiOCl-BBZSN在468 nm附近的发光强度明显最弱,表明由BBZSN铋玻璃制备的BiOCl具有更丰富的OV,可以极大地促进光诱导载流子的空间分离,减少电子-空穴对的复合,从而进一步提高光催化剂的降解性能。

    图 9

    图 9.  BiOCl光催化剂的(a) 瞬态光电流响应、(b) EIS谱图和(c) PL谱图
    Figure 9.  (a) Transient photocurrent responses, (b) EIS spectra, and (c) PL spectra of BiOCl photocatalysts

    采用简单的一步化学反应法制备富氧空位的BiOCl光催化剂。实验结果表明,光催化剂的OV主要源于玻璃物种的原始氧缺陷。其中,用BBZSN玻璃制备的BiOCl-BBZSN光催化剂染料的降解率最高,这是因为BBZSN玻璃中引入了更多的网络外体,使玻璃结构最松散,引起更多的氧缺陷。富氧缺陷的存在调节了BiOCl材料的能带结构并且通过捕获电子加速了电子-空穴对的分离,从而改善材料的光催化降解性能。该研究在制备方法和所用铋原料方面均具有创新性,可为高效光催化剂的工业化大规模制备作出贡献。


    1. [1]

      Sessoli R, Gatteschi D, Caneschi A, et al. Nature, 1993, 365(6442):141-143  doi: 10.1038/365141a0

    2. [2]

      Sessoli R, Tsai H L, Schake A R, et al. J. Am. Chem. Soc., 1993, 115(5):1804-1816  doi: 10.1021/ja00058a027

    3. [3]

      (a) Eppley H J, Tsai H L, de Vries N, et al. J. Am. Chem. Soc., 1995, 117(1): 301-317
      (b)Rinehart J D, Fang M, Evans W J, et al. Nat. Chem., 2011, 3(7): 538-542
      (c)Mannini M, Pineider F, Sainctavit P, et al. Nat. Mater., 2009, 8(3): 194-197
      (d)Hosseini M, Rebi S, Sparkes B M, et al. Light Sci. Appl., 2012, 1(12): e40

    4. [4]

      (a) Bogani L, Wernsdorfer W. Nat. Mater., 2008, 7(3): 179-186
      (b)Mannini M, Pineider F, Danieli C, et al. Nature, 2010, 468(7332): 417-421

    5. [5]

      (a) Leuenberger M N, Loss D. Nature, 2001, 410(6830): 789-793
      (b)Hill S, Edwards R S. Science, 2003, 302(5647): 1015-1018
      (c)Timco G A, Carretta S, Troiani F, et al. Nat. Nanotechnol., 2009, 4(3): 173-178
      (d)Thomas L, Lionti F L, Ballou R. Nature, 1996, 383(6596): 145-147
      (e)Wernsdorfer W, Sessoli R. Science, 1999, 284(5411): 133-135

    6. [6]

      (a) Luzon J, Bernot K, Hewitt I J, et al. Phys. Rev. Lett., 2008, 100: 247205
      (b)Zaleski C M, Depperman E C, Kampf J W, et al. Angew. Chem. Int. Ed., 2004, 43: 3912-3914
      (c)Aronica C, Pilet G, Chastanet G, et al. Angew. Chem. Int. Ed., 2006, 45: 4659-4662
      (d)Christou G, Gatteschi D, Hendrickson D N, et al. MRS Bull., 2000, 25: 66-71
      (e)Gamer M, Lan Y, Roesky P W, et al. Inorg. Chem., 2008, 47(15): 6581-6583

    7. [7]

      (a) Joarder B, Mukherjee S, Xue S F, et al. Inorg. Chem., 2014, 53(14): 7554-7660
      (b)Zhang P, Guo Y N, Tang J K. Coord. Chem. Rev., 2013, 257(11): 1728-1763

    8. [8]

      (a) Saalfrank R W, Scheurer A, Prakash R. Inorg. Chem., 2007, 46(5): 1586-1592
      (b)Koizumi S, Nihei M, Nakano M. Inorg. Chem., 2005, 44(5): 1208-1210

    9. [9]

      (a) Wang H L, Wang B W, Bian Y Z. Coord. Chem. Rev., 2016, 306(1): 195-216
      (b)Abbas G, Lan Y, Kostakis G E. Inorg. Chem., 2010, 49(17): 8067-8072
      (c)Sessoli R, Powell A K. Coord. Chem. Rev., 2009, 253(19): 2328-2341
      (d)Papatriantafyllopoulou C, Wernsdorfer W, Abboud K A. Inorg. Chem., 2011, 50(2): 421-423

    10. [10]

      Yan P F, Lin P H, Habib F, et al. Inorg. Chem., 2011, 50(15):7059-7065  doi: 10.1021/ic200566y

    11. [11]

      (a) Langley S K, Chilton N F, Moubaraki B. Inorg. Chem. Front., 2015, 2: 867-875
      (b)Huo D B, Leng J D, Wang J. J. Coord. Chem., 2017, 70: 936-948

    12. [12]

      (a) Dong X Y, Si C D, Fan Y. Cryst. Growth Des., 2016, 16: 2062-2073
      (b)Wang T, Zhang C, Ju Z. Dalton Trans., 2015, 44: 6926-6935
      (c)Han M L, Bai L, Tang P. Dalton Trans., 2015, 44: 14673-14685

    13. [13]

      Alcazar L, Font-Bardia M, Escuer A. Eur. J. Inorg. Chem., 2015(8):1326-1329
       

    14. [14]

      (a) Lacelle T, Brunet G, Pialat A. Dalton Trans., 2017, 46: 2471-2478
      (b)Wang W M, Zhang H X, Wang S Y. Inorg. Chem., 2015, 54(24): 10610-10622
      (c)Wang W M, Guan X F, Liu X D. Inorg. Chem. Comm., 2017, 79: 8-11
      (d)Das L K, Gómez-García C J, Ghosh A. Dalton Trans., 2015, 44: 1292-1302

    15. [15]

      (a) Floriani C, Solari E, Franceschi F, et al. Chem. Eur. J., 2001, 7: 3052-3061
      (b)Wang C R, Wang S Q, Bo L, et al. Inorg. Chem. Comm., 2017, 85: 52-55
      (c)Liu T Q, Yan P F, Luan F, et al. Inorg. Chem., 2015, 54(1): 221-228

    16. [16]

      Wang H L, Liu C X, Liu T, et al. Dalton Trans., 2013, 42:15355-15360  doi: 10.1039/c3dt51590g

    17. [17]

      Sheldrick G M. SHELXL Reference Manual, Version 5.1, Madison, WI:Bruker Q16 Analytical X-Ray Systems, 1997.

    18. [18]

      ZHANG Lu, ZENG Su-Yuan, LIU Tao, et al. Chinese. J. Inorg. Chem., 2015, 31(9):1761-1773
       

    19. [19]

      (a) Kan J L, Wang H L, Sun W, et al. Inorg. Chem., 2013, 52(15): 8505-8510
      (b)Zheng Y Z, Lan Y, Wernsdorfer W, et al. Chem. Eur. J., 2009, 15: 12566-12570
      (c)Jiang S D, Wang B W, Su G. Angew. Chem. Int. Ed., 2010, 122: 7610-7613

    20. [20]

      Papu B, Pradip B, Amit, K D, et al. Polyhedron, 2014, 75:118-126  doi: 10.1016/j.poly.2014.03.011

    21. [21]

      Lü Z L, Yuan M, Pan F, et al. Inorg. Chem., 2006, 45:3538-3548  doi: 10.1021/ic051648l

    1. [1]

      Sessoli R, Gatteschi D, Caneschi A, et al. Nature, 1993, 365(6442):141-143  doi: 10.1038/365141a0

    2. [2]

      Sessoli R, Tsai H L, Schake A R, et al. J. Am. Chem. Soc., 1993, 115(5):1804-1816  doi: 10.1021/ja00058a027

    3. [3]

      (a) Eppley H J, Tsai H L, de Vries N, et al. J. Am. Chem. Soc., 1995, 117(1): 301-317
      (b)Rinehart J D, Fang M, Evans W J, et al. Nat. Chem., 2011, 3(7): 538-542
      (c)Mannini M, Pineider F, Sainctavit P, et al. Nat. Mater., 2009, 8(3): 194-197
      (d)Hosseini M, Rebi S, Sparkes B M, et al. Light Sci. Appl., 2012, 1(12): e40

    4. [4]

      (a) Bogani L, Wernsdorfer W. Nat. Mater., 2008, 7(3): 179-186
      (b)Mannini M, Pineider F, Danieli C, et al. Nature, 2010, 468(7332): 417-421

    5. [5]

      (a) Leuenberger M N, Loss D. Nature, 2001, 410(6830): 789-793
      (b)Hill S, Edwards R S. Science, 2003, 302(5647): 1015-1018
      (c)Timco G A, Carretta S, Troiani F, et al. Nat. Nanotechnol., 2009, 4(3): 173-178
      (d)Thomas L, Lionti F L, Ballou R. Nature, 1996, 383(6596): 145-147
      (e)Wernsdorfer W, Sessoli R. Science, 1999, 284(5411): 133-135

    6. [6]

      (a) Luzon J, Bernot K, Hewitt I J, et al. Phys. Rev. Lett., 2008, 100: 247205
      (b)Zaleski C M, Depperman E C, Kampf J W, et al. Angew. Chem. Int. Ed., 2004, 43: 3912-3914
      (c)Aronica C, Pilet G, Chastanet G, et al. Angew. Chem. Int. Ed., 2006, 45: 4659-4662
      (d)Christou G, Gatteschi D, Hendrickson D N, et al. MRS Bull., 2000, 25: 66-71
      (e)Gamer M, Lan Y, Roesky P W, et al. Inorg. Chem., 2008, 47(15): 6581-6583

    7. [7]

      (a) Joarder B, Mukherjee S, Xue S F, et al. Inorg. Chem., 2014, 53(14): 7554-7660
      (b)Zhang P, Guo Y N, Tang J K. Coord. Chem. Rev., 2013, 257(11): 1728-1763

    8. [8]

      (a) Saalfrank R W, Scheurer A, Prakash R. Inorg. Chem., 2007, 46(5): 1586-1592
      (b)Koizumi S, Nihei M, Nakano M. Inorg. Chem., 2005, 44(5): 1208-1210

    9. [9]

      (a) Wang H L, Wang B W, Bian Y Z. Coord. Chem. Rev., 2016, 306(1): 195-216
      (b)Abbas G, Lan Y, Kostakis G E. Inorg. Chem., 2010, 49(17): 8067-8072
      (c)Sessoli R, Powell A K. Coord. Chem. Rev., 2009, 253(19): 2328-2341
      (d)Papatriantafyllopoulou C, Wernsdorfer W, Abboud K A. Inorg. Chem., 2011, 50(2): 421-423

    10. [10]

      Yan P F, Lin P H, Habib F, et al. Inorg. Chem., 2011, 50(15):7059-7065  doi: 10.1021/ic200566y

    11. [11]

      (a) Langley S K, Chilton N F, Moubaraki B. Inorg. Chem. Front., 2015, 2: 867-875
      (b)Huo D B, Leng J D, Wang J. J. Coord. Chem., 2017, 70: 936-948

    12. [12]

      (a) Dong X Y, Si C D, Fan Y. Cryst. Growth Des., 2016, 16: 2062-2073
      (b)Wang T, Zhang C, Ju Z. Dalton Trans., 2015, 44: 6926-6935
      (c)Han M L, Bai L, Tang P. Dalton Trans., 2015, 44: 14673-14685

    13. [13]

      Alcazar L, Font-Bardia M, Escuer A. Eur. J. Inorg. Chem., 2015(8):1326-1329
       

    14. [14]

      (a) Lacelle T, Brunet G, Pialat A. Dalton Trans., 2017, 46: 2471-2478
      (b)Wang W M, Zhang H X, Wang S Y. Inorg. Chem., 2015, 54(24): 10610-10622
      (c)Wang W M, Guan X F, Liu X D. Inorg. Chem. Comm., 2017, 79: 8-11
      (d)Das L K, Gómez-García C J, Ghosh A. Dalton Trans., 2015, 44: 1292-1302

    15. [15]

      (a) Floriani C, Solari E, Franceschi F, et al. Chem. Eur. J., 2001, 7: 3052-3061
      (b)Wang C R, Wang S Q, Bo L, et al. Inorg. Chem. Comm., 2017, 85: 52-55
      (c)Liu T Q, Yan P F, Luan F, et al. Inorg. Chem., 2015, 54(1): 221-228

    16. [16]

      Wang H L, Liu C X, Liu T, et al. Dalton Trans., 2013, 42:15355-15360  doi: 10.1039/c3dt51590g

    17. [17]

      Sheldrick G M. SHELXL Reference Manual, Version 5.1, Madison, WI:Bruker Q16 Analytical X-Ray Systems, 1997.

    18. [18]

      ZHANG Lu, ZENG Su-Yuan, LIU Tao, et al. Chinese. J. Inorg. Chem., 2015, 31(9):1761-1773
       

    19. [19]

      (a) Kan J L, Wang H L, Sun W, et al. Inorg. Chem., 2013, 52(15): 8505-8510
      (b)Zheng Y Z, Lan Y, Wernsdorfer W, et al. Chem. Eur. J., 2009, 15: 12566-12570
      (c)Jiang S D, Wang B W, Su G. Angew. Chem. Int. Ed., 2010, 122: 7610-7613

    20. [20]

      Papu B, Pradip B, Amit, K D, et al. Polyhedron, 2014, 75:118-126  doi: 10.1016/j.poly.2014.03.011

    21. [21]

      Lü Z L, Yuan M, Pan F, et al. Inorg. Chem., 2006, 45:3538-3548  doi: 10.1021/ic051648l

  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    4. [4]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    5. [5]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    6. [6]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    7. [7]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    8. [8]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    9. [9]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    12. [12]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    13. [13]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    14. [14]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    15. [15]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    16. [16]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    17. [17]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    18. [18]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    19. [19]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    20. [20]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

Metrics
  • PDF Downloads(5)
  • Abstract views(322)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return