CNx Nanotube Support Platinum-CeOx as Highly Stable and Efficient Electrocatalyst for Oxygen Reduction Reaction
- Corresponding author: ZHANG Li-Juan, zhanglj1997@bjut.edu.cn
Citation: FU Yu, AO Hong-Liang, ZHANG Ling-Xiao, GUO Yu-Meng, LIANG Ju-Mei, ZHANG Li-Juan, LI Fan. CNx Nanotube Support Platinum-CeOx as Highly Stable and Efficient Electrocatalyst for Oxygen Reduction Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(9): 1677-1687. doi: 10.11862/CJIC.2018.206
Lai L, Potts J R, Zhan D, et al. Energ Environ. Sci., 2009, 323:760
Z Dong S, Feng J, Fan M, et al. RSC Adv., 2015, 5:14610-14630
doi: 10.1039/C4RA13734E
Wang Y J, Wilkinson D P, Zhang J J. Chem. Rev., 2011, 111:7625-2651
doi: 10.1021/cr100060r
Su D S, Perathoner S, Centi G. Chem. Rev., 2013, 113:5782-5816
doi: 10.1021/cr300367d
Yuan X, Hu X X, Ding X L, et al. Nanoscale Res. Lett., 2013, 8:478
doi: 10.1186/1556-276X-8-478
Zhang J, Liu X, Zhang L, et al. Macromol. Rapid Commun., 2013, 34:528-532
doi: 10.1002/marc.v34.6
Peng Y, Liu C, Pan C, et al. ACS Appl. Mater. Interfaces, 2013, 5:2752-2760
doi: 10.1021/am4004478
Jiang S, Ma Y, Jian G, et al. Adv. Mater., 2009, 21:4953-4956
doi: 10.1002/adma.200900677
Divya P, Ramaprabhu S. J. Mater. Chem. A, 2013, 1:13605-13611
doi: 10.1039/c3ta13070c
Silva J C M, De Souza R F B, Parreira L S, et al. Appl. Catal. B, 2010, 99:265-271
doi: 10.1016/j.apcatb.2010.06.031
Xiao Y P, Jiang W J, Wan S, et al. J. Mater. Chem. A, 2013, 1:7463-7468
doi: 10.1039/c3ta10298j
Trovarelli A. Catalysis Reviews:Science and Engineering, 1996, 38:439-520
doi: 10.1080/01614949608006464
Scibioh M A, Kim S K, Cho E A, et al. Appl. Catal. B, 2008, 84:773
doi: 10.1016/j.apcatb.2008.06.017
Shen P K, Xu C W. Electrochem. Commun., 2006, 8:184-188
doi: 10.1016/j.elecom.2005.11.013
Yang X, Zhu Z, Dai T, et al. Macromol. Rapid Commun, 2005, 26:1736-1740
doi: 10.1002/(ISSN)1521-3927
Yamamoto K, Imaoka T, Chun W J, et al. Nat. Chem., 2009, 1:397-402
doi: 10.1038/nchem.288
Chauhan S, Richards G J, Mori T, et al. J. Mater. Chem. A, 2013, 1:6262-6270
doi: 10.1039/c3ta10652g
Yu S, Liu Q, Yang W, et al. Electrochimica Acta, 2013, 94:245-251
doi: 10.1016/j.electacta.2013.01.149
Tan K L, Tan B T G, Kang E T, et al. Phys. Rev. B, 1989, 39:8070
doi: 10.1103/PhysRevB.39.8070
Biddinger E J, Deak D, Ozkan. Top. Catal., 2009, 52:1566-1574
doi: 10.1007/s11244-009-9289-y
Yatsimirskii K B, Nemoskalenko V V, Aleshin V G, et al. Chem. Phys. Lett., 1977, 52:481-484
doi: 10.1016/0009-2614(77)80490-9
Batich C D, Donald D S. J. Am. Chem. Soc., 1984, 106:2758-2761
doi: 10.1021/ja00322a004
Lee K R, Lee K U, Lee J W, et al. Electrochem. Commun., 2010, 12:1052-1055
doi: 10.1016/j.elecom.2010.05.023
Zhang J, He D P, Su H, et al. J. Mater. Chem. A, 2014, 2:12642-12661
doi: 10.1039/C4TA00941J
Ivanova A S. Kinetics and Catalysis, 2009, 50:797-815
Lim D H, Lee W D, Choi D H, et al. Appl. Catal. B, 2010, 94:85-96
doi: 10.1016/j.apcatb.2009.10.024
Fugane K, Mori T, Ou D R, et al. Langmuir, 2012, 28:16692-16700
doi: 10.1021/la302912r
Kwon K, Lee K H, Jin S A, et al. Electrochem. Commun., 2011, 13:1067-1069
doi: 10.1016/j.elecom.2011.06.036
Miki T, Ogawa T, Haneda M, et al. J. Phys. Chem., 1990, 94:6464-6467
doi: 10.1021/j100379a056
Campbell C T. Nat. Chem., 2012, 4:597
doi: 10.1038/nchem.1412
Farmer J A, Campbell C T. Science, 2010, 329:933-936
doi: 10.1126/science.1191778
Feng L G, Yang J, Hu Y, et al. Int. J. Hydrogen Energy, 2012, 37:4812-4818
doi: 10.1016/j.ijhydene.2011.12.114
Gu D M, Chu Y Y, Wang Z B, et al. Appl. Catal. B, 2011, 102:9-18
doi: 10.1016/j.apcatb.2010.11.018
Zaragoza-Martín F, Sopea-Escario D, Morallon E, et al. J. Power Sources, 2007, 171:302-309
doi: 10.1016/j.jpowsour.2007.06.078
Lewera A, Timperman L, Roguska A, et al. J. Phys. Chem. C, 2011, 115:20153-20159
doi: 10.1021/jp2068446
Chen L, Tang Y, Cui L, et al. J. Power Sources, 2013, 234:69-81
doi: 10.1016/j.jpowsour.2013.01.121
Dauscher A, Hilaire L, Lenormand F, et al. Surf. Interface Anal., 1990, 16:341
doi: 10.1002/(ISSN)1096-9918
Masuda T, Fukumitsu H, Fugane K, et al. J. Phys. Chem. C, 2012, 116:10098-10102
Du C, Gao X, Cheng C, et al. Electrochimica Acta, 2018, 266:348-356
doi: 10.1016/j.electacta.2018.02.035
Bai Y, Wu J, Qiu X, et al. Appl. Catal. B, 2007, 73:144-149
doi: 10.1016/j.apcatb.2006.06.026
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Bingbing Shi , Yuchun Wang , Yi Zhou , Xing-Xing Zhao , Yizhou Li , Nuoqian Yan , Wen-Juan Qu , Qi Lin , Tai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345