Citation: LIU Chun-Guang, ZHANG Han-Yu, JIANG Meng-Xu. DFT Study of Mono-Manganese-Substituted Keggin-Type Polyoxometalates with Atmospheric Small Molecules X (X=H2O, N2, O2, NO, N2O, CO and CO2)[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(6): 1127-1136. doi: 10.11862/CJIC.2018.143 shu

DFT Study of Mono-Manganese-Substituted Keggin-Type Polyoxometalates with Atmospheric Small Molecules X (X=H2O, N2, O2, NO, N2O, CO and CO2)

  • Corresponding author: LIU Chun-Guang, liucg407@163.com
  • Received Date: 24 October 2017
    Revised Date: 13 February 2018

Figures(2)

  • Geometries, electronic structure, and bonding nature of a series of mono-manganese-substituted Keggin-type (POMs) with atmospheric small molecules X (X=H2O, N2, O2, NO, N2O, CO and CO2) have been studied based on density functional theory (DFT) method with M06L functional. Due to the poly-anionic nature of polyoxometalates (POMs), the counterions effects have firstly been considered by means of a full treatment of the cesium salt Cs4[PW11O39MnH2O]. DFT-M06L calculations show that the key geometric a nd electronic parameters are almost constants as change of the four Cs counterions. The optimized calculations for[PW11O39MnH2O]4-both in gas phase and solution provide an analogous result, no significant variation of key geometric and electronic parameters was found when compared with the cesium salt. The calculated relative energy of different spin states indicates that the lowest energy spin state is the high-spin quintet state for[PW11O39MnX]4-(X=H2O, N2, N2O, CO and CO2), triplet state for[PW11O39MnO2]4-, and doublet state for[PW11O39MnNO]4-. The calculated adsorption energy of those atmospheric small molecules over the porphyrin-like POM ligand increases in the following order:N2 < N2O < CO≈CO2 < O2 < H2O < NO. The Mn-NO POM complex provides considerable adsorption energy. Mulliken population analysis shows that coordination of NO ligand to the Mn center in its doublet ground state arises from an antiferromagnetic coupling between an intermediate-spin Mn center and NO· unit.
  • 加载中
    1. [1]

      Kozhevnikov I V. Chem. Rev., 1998, 98:171-198  doi: 10.1021/cr960400y

    2. [2]

      Weinstock I A. Chem. Rev., 1998, 98:113-170  doi: 10.1021/cr9703414

    3. [3]

      Mizuno N, Misono M. Chem. Rev., 1998, 98:199-218  doi: 10.1021/cr960401q

    4. [4]

      Dolbecq A, Dumas E, Mayer C R, et al. Chem. Rev., 2010, 110:6009-6048  doi: 10.1021/cr1000578

    5. [5]

      Sun M, Zhang J, Putaj P, et al. Chem. Rev., 2014, 114:981-1019  doi: 10.1021/cr300302b

    6. [6]

      Wang S S, Yang G Y. Chem. Rev., 2015, 115:4893-4963  doi: 10.1021/cr500390v

    7. [7]

      Vilà-Nadal L, Mitchell S G, Rodríguez-Fortea A, et al. Phys. Chem. Chem. Phys., 2011, 13:20136-20145  doi: 10.1039/c1cp21209e

    8. [8]

      Vilà-Nadal L, Mitchell S G, Long D L, et al. Dalton Trans., 2012, 41:2264-2271  doi: 10.1039/C2DT11919F

    9. [9]

      McGlone T, Vilà-Nadal L, Miras H N, et al. Dalton Trans., 2010, 39:11599-11604  doi: 10.1039/c0dt01327g

    10. [10]

      Rubinstein A, Jiménez-Lozanao P, Carbó J J, et al. J. Am. Chem. Soc., 2014, 136:10941-10948  doi: 10.1021/ja502846h

    11. [11]

      Marrot J, Pilette M A, Haouas M, et al. J. Am. Chem. Soc., 2012, 134:1724-1737  doi: 10.1021/ja2090383

    12. [12]

      FAN Ying, LIU Shi-Zhong. Chinese J. Inorg. Chem., 2002, 18:635-638  doi: 10.3321/j.issn:1001-4861.2002.06.020
       

    13. [13]

      Khenkin A M, Kumar D, Shaik S, et al. J. Am. Chem. Soc., 2006, 128:15451-15460  doi: 10.1021/ja0638455

    14. [14]

      Liu C G, Liu S, Zheng T. Inorg. Chem., 2015, 54:7929-7935  doi: 10.1021/acs.inorgchem.5b01002

    15. [15]

      Liu C G, Su Z M, Guan W. Inorg. Chem., 2009, 48:541-548  doi: 10.1021/ic8012443

    16. [16]

      Liu C G, Guan W, Yan L K, et al. Dalton Trans., 2011, 40:2967-2974  doi: 10.1039/c0dt01085e

    17. [17]

      Liu C G, Guan W, Yan L K, et al. Dalton Trans., 2009, 38:6208-6213

    18. [18]

      Poblet J M, López X, Bo C, et al. Chem. Soc. Rev., 2003, 32:297-308  doi: 10.1039/B109928K

    19. [19]

      López X, Carbó J J, Bo C, et al. Chem. Soc. Rev., 2012, 41:7537-7571  doi: 10.1039/c2cs35168d

    20. [20]

      Maestre J M, López X, Bo C, et al. J. Am. Chem. Soc., 2001, 123:3749-3758  doi: 10.1021/ja003563j

    21. [21]

      Antonova N S, Carbó J J, Kortz U, et al. J. Am. Chem. Soc., 2010, 132:7488-7497  doi: 10.1021/ja1023157

    22. [22]

      Efremenko I, Neumann R. J. Am. Chem. Soc., 2012, 134:20669-20680  doi: 10.1021/ja308625q

    23. [23]

      Hill C L, Brown R B. J. Am. Chem. Soc., 1986, 108:536-538  doi: 10.1021/ja00263a046

    24. [24]

      Mansuy D, Bartoli J F, Battioni P, et al. J. Am. Chem. Soc., 1991, 113:7222-7226  doi: 10.1021/ja00019a019

    25. [25]

      Karpuschkin T, Kappes M M, Hampe O. Angew. Chem. Int. Ed., 2013, 52:10374-10377  doi: 10.1002/anie.201303200

    26. [26]

      Chen O, Groh S, Liechty A, et al. J. Am. Chem. Soc., 1999, 121:11910-11911  doi: 10.1021/ja991477h

    27. [27]

      Kano K, Itoh Y, Kitagishi H, et al. J. Am. Chem. Soc., 2008, 130:8006-8015  doi: 10.1021/ja8009583

    28. [28]

      Wasser I M, Huang H W, Moenne-Loccoz P, et al. J. Am. Chem. Soc., 2005, 127:3310-3320  doi: 10.1021/ja0458773

    29. [29]

      Morris A J, Meyer G J, Fujita E. Acc. Chem. Res., 2009, 42:1983-1994  doi: 10.1021/ar9001679

    30. [30]

      Groves J T, Roman J S. J. Am. Chem. Soc., 1995, 117:5594-5595  doi: 10.1021/ja00125a025

    31. [31]

      Saito S, Ohtake H, Umezawa N, et al. Chem. Commun., 2013, 49:8979-8981  doi: 10.1039/c3cc43912g

    32. [32]

      Phougat N, Vasudevan P, Jha N K, et al. Transition Metal Chem., 2003, 28:838-847  doi: 10.1023/A:1026095426207

    33. [33]

      Meunier B. Chem. Rev., 1992, 92:1411-1456  doi: 10.1021/cr00014a008

    34. [34]

      Liu L, Yu M, Wayland B B, et al. Chem. Commun., 2010, 46:6353-6355  doi: 10.1039/c0cc01406k

    35. [35]

      Abdurahman A, Renger T. J. Phys. Chem. A, 2009, 113:9202-9206  doi: 10.1021/jp9032657

    36. [36]

      Zhao Y, Truhlar D G. J. Chem. Phys., 2006, 125:1-18

    37. [37]

      Hay P J, Wadt W R. J. Chem. Phys., 1985, 82:270-283  doi: 10.1063/1.448799

    38. [38]

      Wadt W R, Hay P J. J. Chem. Phys., 1985, 82:284-293  doi: 10.1063/1.448800

    39. [39]

      Hay P J, Wadt W R. J. Chem. Phys., 1985, 82:299-310  doi: 10.1063/1.448975

    40. [40]

      Tomasi J, Mennucci B, Cammi R. Chem. Rev., 2005, 105:2999-3093  doi: 10.1021/cr9904009

    41. [41]

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian, Inc., Wallingford CT, 2009, Gaussian 09, Revision D. 01

    42. [42]

      Kirby J F, Baker L C W. Inorg. Chem., 1998, 37:5537-5543  doi: 10.1021/ic971382l

    43. [43]

      Brevard C, Schimpf R, Tourne G, et al. J. Am. Chem. Soc., 1983, 105:7059-7063  doi: 10.1021/ja00362a008

    44. [44]

      Grigoriev V A, Cheng D, Hill C L, et al. J. Am. Chem. Soc., 2001, 123:52925307

    45. [45]

      Kato C N, Kashiwagi T, Unno W, et al. Inorg. Chem., 2014, 53:4824-4832  doi: 10.1021/ic402650g

    46. [46]

      Mizuno N, Min J S, Taguchi A. Chem. Mater., 2004, 16:2809-2825

    47. [47]

      Bi L H, Reicke M, Kortz U, et al. Inorg. Chem., 2004, 43:3915-3920  doi: 10.1021/ic049736d

    48. [48]

      Pamplin C B, Ma E S F, Safari N, et al. J. Am. Chem. Soc., 2001, 123:8596-8597  doi: 10.1021/ja0106319

    49. [49]

      Groves J T, Roman J S. J. Am. Chem. Soc., 1995, 117:5594-5595  doi: 10.1021/ja00125a025

    50. [50]

      Groves J T, Quinn R. J. Am. Chem. Soc., 1985, 107:5790-5791  doi: 10.1021/ja00306a029

    51. [51]

      Ben-Daniel R, Weiner L, Neumann R. J. Am. Chem. Soc., 2002, 124:8788-8789  doi: 10.1021/ja0259077

    52. [52]

      Ghosh A. Acc. Chem. Res., 2005, 38:943-954  doi: 10.1021/ar050121+

    53. [53]

      Kachalova G S, Pepov A N, Bartunik H D. Science, 1999, 284:473-476  doi: 10.1126/science.284.5413.473

    54. [54]

      Spiro T G, Kozlowski P M. J. Am. Chem. Soc., 1998, 120:4524-4525  doi: 10.1021/ja9732946

    55. [55]

      Rovira C, Kunc K, Hutter J, et al. Int. J. Quantum Chem., 1998, 69:31-35  doi: 10.1002/(ISSN)1097-461X

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    3. [3]

      Haifeng ZHENGXingzhe GUOYunwei WEIXinfang WANGHuimin QIYuting YANJie ZHANGBingwen LI . Post-synthetic modification strategy to construct Co-MOF composites for boosting oxygen evolution reaction activity. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 193-202. doi: 10.11862/CJIC.20250029

    4. [4]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    5. [5]

      Dixing NiJiarui QiZhi DengDong DingRui WangWenjie ZhouSisi ZhouYang SunShuai LiZhaoxiang Wang . Voltage design and transport channel optimization of anti-perovskite cathode materials: A density functional theory study. Chinese Chemical Letters, 2025, 36(12): 110683-. doi: 10.1016/j.cclet.2024.110683

    6. [6]

      Li-Min CuiWei-Hui FangJian Zhang . Polyoxometalates containing aluminum atoms. Chinese Chemical Letters, 2025, 36(10): 110386-. doi: 10.1016/j.cclet.2024.110386

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    11. [11]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    12. [12]

      Tengteng WangYiming JuYao ChengHaiyang WangDejin Zang . Recent advances in polyoxometalates based strategies for green synthesis of drugs. Chinese Chemical Letters, 2025, 36(5): 109871-. doi: 10.1016/j.cclet.2024.109871

    13. [13]

      Wen-Bo Wei Qi-Long Zhu . Electrosynthesis of hydroxylamine from earth-abundant small molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100383-100383. doi: 10.1016/j.cjsc.2024.100383

    14. [14]

      Xinxin ZhangZhijian LiangXu ZhangQian GuoYing XieLei WangHonggang Fu . Electronic modulation of VN on Co5.47N as tri-functional electrocatalyst for constructing zinc-air battery to drive water splitting. Chinese Chemical Letters, 2025, 36(5): 109935-. doi: 10.1016/j.cclet.2024.109935

    15. [15]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    16. [16]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    17. [17]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    18. [18]

      Ri PENGYingxiang BAIYuxin XIEDunru ZHUcis/trans-Octahedral configuration induced topologically different MOFs: Syntheses, structures, and Hirshfeld surface analyses. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1650-1660. doi: 10.11862/CJIC.20250143

    19. [19]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    20. [20]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

Metrics
  • PDF Downloads(4)
  • Abstract views(656)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return