Citation: BI Yan-Ting, YAO Jun, SHEN Zhong-Hui, ZHANG Hong-Xing, PAN Qing-Jiang. Interaction Behavior Between Hexa-dentate Polypyrrolic Macrocycles and Actinyl Species: Bonding, Thermodynamic and Spectroscopic Properties[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(6): 1071-1078. doi: 10.11862/CJIC.2018.136 shu

Interaction Behavior Between Hexa-dentate Polypyrrolic Macrocycles and Actinyl Species: Bonding, Thermodynamic and Spectroscopic Properties

Figures(4)

  • A relativistic density functional theory (DFT) was used to systematically examine a series of uranyl and transuranyl complexes of N-donor macrocyclic ligands, [(AnO2)(Ln)]2-(labeled as nAn; n=1~3; An=U, Np and Pu). Further comparison was made with[(UO2)(L0)]2-(A) that was experimentally synthesized. Cavities of L1 and L2 macrocycles are found to match well with actinyl ions, but the one of L3 is a lot larger. Consequently, the L3 complexes have to adopt distorted geometry to energetically stabilize systems. Infrared vibrational spectra presented that the An=O stretching frequencies decrease in going from U, Np to Pu. This agrees with the trend of optimized bond lengths of An=O and bond orders. Topological analyses of quantum theory of atoms in molecule (QTAIM) indicate that the An-N bonds have largely ionic character. Depending on different actinyl source, free energies reacting with various macrocyclic ligands were calculated around 146.4 kJ·mol-1, comparable to the calculated values of A. Time-dependent DFT calculations on four uranyl complexes well reproduced absorption spectra of experimentally reported analogue. The absorption bands in the near-IR and visible region have large contribution from ligand-to-metal charge transfer (LMCT), which is responsible for changes of solution color in the process of macrocyclic ligand sensing uranyl species.
  • 加载中
    1. [1]

      Hashke J M, Stakebake J L. The Chemistry of the Actinide and Transactinide Elements. Dordrecht:Springer, 2006:3199-3272

    2. [2]

      Choppin G R. J. Radioanal. Nucl. Chem., 2007, 273(3):695-703  doi: 10.1007/s10967-007-0933-3

    3. [3]

      Rambo B M, Sessler J L. Chem.-Eur. J., 2011, 17(18):4946-4959  doi: 10.1002/chem.v17.18

    4. [4]

      GU Jia-Fang, XU Ke, CHEN Wen-Kai. Chinese J. Inorg. Chem., 2017, 33(9):1579-1586  doi: 10.11862/CJIC.2017.179
       

    5. [5]

      Wang D, van Gunsteren W F, Chai Z. Chem. Soc. Rev., 2012, 41(17):5836-5865  doi: 10.1039/c2cs15354h

    6. [6]

      Wang D, Su J, Wu J, et al. Radiochim. Acta, 2014, 102(1/2):13-25

    7. [7]

      Wu Q Y, Wang C Z, Lan J H, et al. Inorg. Chem., 2014, 53(18):9607-9614  doi: 10.1021/ic501006p

    8. [8]

      Wu H, Wu Q Y, Wang C Z, et al. Dalton Trans., 2015, 44(38):16737-16745  doi: 10.1039/C5DT02528A

    9. [9]

      Lan J H, Shi W Q, Yuan L Y. Coord. Chem. Rev., 2012, 256(13/14):1406-1417
       

    10. [10]

      Lan J H, Shi W Q, Yuan L Y, et al. Inorg. Chem., 2011, 50(19):9230-9237  doi: 10.1021/ic200078j

    11. [11]

      Hu H S, Wei F, Wang X, et al. J. Am. Chem. Soc., 2014, 136(4):1427-1437  doi: 10.1021/ja409527u

    12. [12]

      Hu S X, Jian J, Su J, et al. Chem. Sci., 2017, 8(5):4035-4043  doi: 10.1039/C7SC00710H

    13. [13]

      Chi C, Wang J Q, Qu H, et al. Angew. Chem. Int. Ed., 2017, 56(24):6932-6936  doi: 10.1002/anie.201703525

    14. [14]

      Sessler J L, Seidel D, Vivian A E, et al. Angew. Chem. Int. Ed., 2001, 40(3):591-594  doi: 10.1002/1521-3773(20010202)40:3<>1.0.CO;2-A

    15. [15]

      Sessler J L, Gorden A E V, Seidel D, et al. Inorg. Chim. Acta, 2002, 341:54-70  doi: 10.1016/S0020-1693(02)01202-1

    16. [16]

      Sessler J L, Melfi P J, Seidel D, et al. Tetrahedron, 2004, 60(49):11089-11097  doi: 10.1016/j.tet.2004.08.055

    17. [17]

      Melfi P J, Kim S K, Lee J T, et al. Inorg. Chem., 2007, 46(13):5143-5145  doi: 10.1021/ic700781t

    18. [18]

      Ho I T, Zhang Z, Ishida M, et al. J. Am. Chem. Soc., 2014, 136(11):4281-4286  doi: 10.1021/ja412520g

    19. [19]

      Zhang Z, Dong S K, Lin C Y, et al. J. Am. Chem. Soc., 2015, 137(24):7769-7774  doi: 10.1021/jacs.5b03131

    20. [20]

      Sessler J L, Melfi P J, Lynch V M. J. Porphyrins Phthaloc-yanines, 2007, 11(4):287-293  doi: 10.1142/S1088424607000345

    21. [21]

      Cafeo G, Kohnke F H, La Torre G L, et al. Angew. Chem. Int. Ed., 2000, 39(8):1496-1498  doi: 10.1002/(SICI)1521-3773(20000417)39:8<1496::AID-ANIE1496>3.0.CO;2-I

    22. [22]

      Jana A, Ishida M, Cho K, et al. Chem. Commun., 2013, 49(79):8937-8939  doi: 10.1039/c3cc44934c

    23. [23]

      Fukuzumi S, Ohkubo K, D'Souza F, et al. Chem. Commun., 2012, 48(79):9801-9815  doi: 10.1039/c2cc32848h

    24. [24]

      Laikov D N. J. Comput. Chem., 2007, 28(3):698-702  doi: 10.1002/(ISSN)1096-987X

    25. [25]

      Klamt A, Jonas V, Burger T, et al. J. Phys. Chem. A, 1998, 102(26):5074-5085  doi: 10.1021/jp980017s

    26. [26]

      Zhao H B, Zheng M, Schreckenbach G, et al. Inorg. Chem., 2017, 56(5):2763-2776  doi: 10.1021/acs.inorgchem.6b02927

    27. [27]

      CHEN Fang-Yuan, QU Ning, WU Qun-Yan, et al. Acta Chim. Sinica, 2017, 75(5):457-463
       

    28. [28]

      ZHAO Si-Wei, ZHONG Yu-Xi, GUO Yuan -Ru, et al. Acta Chim. Sinica, 2016, 74(8):683-688
       

    29. [29]

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian09, Gaussian, Inc., Wallingford CT, 2009.

    30. [30]

      Bader R F W. J. Phys. Chem. A, 1998, 102:7314-7323  doi: 10.1021/jp981794v

    31. [31]

      Lu T, Chen F. J. Comput. Chem., 2012, 33(5):580-592  doi: 10.1002/jcc.v33.5

    32. [32]

      Natrajan L, Burdet F, Pecaut J, et al. J. Am. Chem. Soc., 2006, 128(22):7152-7153  doi: 10.1021/ja0609809

    33. [33]

      Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77(18):3865-3868  doi: 10.1103/PhysRevLett.77.3865

    34. [34]

      Hlina J A, Pankhurst J R, Kaltsoyannis N, et al. J. Am. Chem. Soc., 2016, 138(10):3333-3345  doi: 10.1021/jacs.5b10698

    35. [35]

      Mountain A R, Kaltsoyannis N. Dalton Trans., 2013, 42(37):13477-13486  doi: 10.1039/c3dt51337h

    36. [36]

      GU Jia-Fang, MAN Mei-Ling, LU Chun-Hai, et al. Chinese J. Inorg. Chem., 2012, 28(7):1324-1332
       

  • 加载中
    1. [1]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    2. [2]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    3. [3]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    4. [4]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    9. [9]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    10. [10]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    11. [11]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    14. [14]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    18. [18]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

Metrics
  • PDF Downloads(7)
  • Abstract views(1002)
  • HTML views(305)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return