Research Progress on Carbon Nanotubes in Noble-Metal-Free Electrocatalytic Oxygen Reduction Reaction
- Corresponding author: LEI Yong-Peng, lypkd@163.com LUO Shi-Bin, luoshibin@csu.edu.cn
Citation: WANG Qi-Chen, WANG Jing, LEI Yong-Peng, CHEN Zhi-Yan, SONG Yao, LUO Shi-Bin. Research Progress on Carbon Nanotubes in Noble-Metal-Free Electrocatalytic Oxygen Reduction Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(5): 807-822. doi: 10.11862/CJIC.2018.101
Stamenkovic V R, Strmcnik D, Lopes P P, et al. Nat. Mater., 2016, 16:57-69
Fu J, Cano Z P, Park M G, et al. Adv. Mater., 2017, 29:1604685-1604718
doi: 10.1002/adma.201604685
Liang Y Y, Li Y G, Wang H L, et al. Nat. Mater., 2011, 10:780-786
doi: 10.1038/nmat3087
Zhou M, Wang H L, Guo S J. Chem. Soc. Rev., 2016, 45:1273-1307
doi: 10.1039/C5CS00414D
Jaouen F, Proietti E, Lefèvre M, et al. Energy Environ. Sci., 2011, 4:114-130
doi: 10.1039/C0EE00011F
Li Y G, Zhou W, Wang H L, et al. Nat. Nanotecnnol., 2012, 7:394-400
doi: 10.1038/nnano.2012.72
Wu N, Lei Y P, Wang Q C, et al. Nano Res., 2017, 10:2332-2343
doi: 10.1007/s12274-017-1428-3
Wang Q C, Chen Z Y, Wu N, et al. ChemElectroChem, 2017, 4:514-520
doi: 10.1002/celc.v4.3
Wu N, Wang Y D, Lei Y P, et al. Sci. Rep., 2015, 5:17396-17404
doi: 10.1038/srep17396
Lei Y P, Shi Q, Han C, et al. Nano Res., 2016, 9:2498-2509
doi: 10.1007/s12274-016-1136-4
Cai X Y, Lai L F, Lin J Y, et al. Mater. Horiz., 2017, 4:945-976
doi: 10.1039/C7MH00358G
Ding Y L, Kopold P, Hahn K, et al. Adv. Funct. Mater., 2016, 26:1112-1119
doi: 10.1002/adfm.v26.7
Gu D, Li W, Wang F, et al. Angew. Chem. Int. Ed., 2015, 54:7060-7064
doi: 10.1002/anie.201501475
Chen Y G, Wang J J, Liu H, et al. J. Phys. Chem. C, 2011, 115:3769-3776
doi: 10.1021/jp108864y
Wu P, Cheng S, Yao M H, et al. Adv. Funct. Mater., 2017, 27:1702160-1702168
doi: 10.1002/adfm.v27.34
Zhao J, Su Y J, Yang Z, et al. Carbon, 2013, 58:92-98
doi: 10.1016/j.carbon.2013.02.036
Das R, Shahnavaz Z, Ali M E, et al. Nanoscale Res. Lett., 2016, 11:510-532
doi: 10.1186/s11671-016-1730-0
Chung H T, Zelenay P. Chem. Commun., 2015, 51:13546-13549
doi: 10.1039/C5CC04621A
Wen Z H, Ci S Q, Hou Y, et al. Angew. Chem. Int. Ed., 2014, 53:6496-6500
doi: 10.1002/anie.201402574
Chung H T, Won J H, Zelenay P. Nat. Commun., 2013, 4:1922-1926
doi: 10.1038/ncomms2944
Cheng Y, Zhang J, Jiang S P. Chem. Commun., 2015, 51:13764-13767
doi: 10.1039/C5CC02218E
Yan Y B, Miao J W, Yang Z H, et al. Chem. Soc. Rev., 2015, 44:3295-3346
doi: 10.1039/C4CS00492B
Wang X, Ouyang C B, Dou S, et al. RSC Adv., 2015, 5:41901-41904
doi: 10.1039/C5RA05172J
Wu Z Y, Benchafia E M, Iqbal Z, et al. Angew. Chem. Int. Ed., 2014, 126:12763-12767
doi: 10.1002/ange.201403060
Gentil S, Serre D, Philouze C, et al. Angew. Chem. Int. Ed., 2015, 55:2517-2521
Wei P J, Yu G Q, Naruta Y, et al. Angew. Chem. Int. Ed., 2014, 53:6659-6663
doi: 10.1002/anie.201403133
Rao C V, Cabrera C R, Ishikawa Y. J. Phys. Chem. Lett., 2010, 1:2622-2627
doi: 10.1021/jz100971v
Sa Y J, Park C, Jeong H Y, et al. Angew. Chem. Int. Ed., 2014, 26:4186-4190
Gao F, Zhao G L, Yang S Z. ACS Catal., 2014, 4:1267-1273
doi: 10.1021/cs500221m
Gong K P, Du F, Xia Z H, et al. Science, 2009, 323:760-764
doi: 10.1126/science.1168049
Sharifi T, Hu G Z, Jia X E, et al. ACS Nano, 2012, 6:8904-8912
doi: 10.1021/nn302906r
Zhao A Q, Masa J, Schuhmann W, et al. J. Phys. Chem. C, 2013, 117:24283-24291
doi: 10.1021/jp4059438
Zhu X, Zhu Y H, Tian C C, et al. J. Mater. Chem. A, 2017, 5:4507-4512
doi: 10.1039/C6TA09604B
Wu G, Santandreu A, Kellogg W, et al. Nano Energy, 2016, 29:83-110
doi: 10.1016/j.nanoen.2015.12.032
Lee S, Choun M, Ye Y J, et al. Angew. Chem. Int. Ed., 2015, 54:9230-9234
doi: 10.1002/anie.201501590
Tian G L, Zhang Q, Zhang B S, et al. Adv. Funct. Mater., 2014, 24:5956-5962
doi: 10.1002/adfm.201401264
Du R, Zhang N, Zhu J H, et al. Small, 2015, 11:3903-3908
doi: 10.1002/smll.201500587
Liu S, Li G Z, Gao Y Y, et al. Catal. Sci. Technol., 2017, 7:4007-4016
doi: 10.1039/C7CY00491E
Liu Z W, Shi Q Q, Zhang R F, et al. J. Power Sources, 2014, 268:171-175
doi: 10.1016/j.jpowsour.2014.06.036
Yang L J, Jiang S J, Zhao Y, et al. Angew. Chem. Int. Ed., 2011, 123:7270-7273
doi: 10.1002/ange.v123.31
Shi Q, Lei Y P, Wang Y D, et al. Curr. Appl. Phys., 2015, 15:1606-1614
doi: 10.1016/j.cap.2015.09.012
Wang Y X, Lei Y P, Wang H P. RSC Adv., 2016, 6:73560-73565
doi: 10.1039/C6RA06664J
Zhu J L, Jiang S P, Wang R H, et al. J. Mater. Chem. A, 2014, 2:15448-15453
doi: 10.1039/C4TA02427C
Zhao Y, Yang L J, Chen S, et al. J. Am. Chem. Soc., 2013, 135:1201-1204
doi: 10.1021/ja310566z
Wang S Y, Iyyamperumal E, Roy A, et al. Angew. Chem. Int. Ed., 2011, 50:11756-11760
doi: 10.1002/anie.201105204
Shi Q Q, Peng F, Liao S X, et al. J. Mater. Chem. A, 2013, 1:14853-14857
doi: 10.1039/c3ta12647a
Choi C H, Park S H, Woo S I. ACS Nano, 2012, 6:7084-7091
doi: 10.1021/nn3021234
Wang S Y, Yu D S, Dai L M. J. Am. Chem. Soc., 2011, 133:5182-5185
doi: 10.1021/ja1112904
Wang X X, Wang B, Zhong J, et al. Nano Res., 2016, 9:1497-1506
doi: 10.1007/s12274-016-1046-5
Masa J, Xia W, Muhler M, et al. Angew. Chem. Int. Ed., 2015, 54:10102-10120
doi: 10.1002/anie.201500569
Zitolo A, Goellner V, Armel V, et al. Nat. Mater., 2015, 14:937-944
doi: 10.1038/nmat4367
Jia Q Y, Ramaswamy N, Hafiz H, et al. ACS Nano, 2015, 9:12496-12505
doi: 10.1021/acsnano.5b05984
Sa Y J, Seo D J, Woo J, et al. J. Am. Chem. Soc., 2016, 138:15046-15056
doi: 10.1021/jacs.6b09470
Yasuda S, Furuya A, Uchibori Y, et al. Adv. Funct. Mater., 2016, 26:738-744
doi: 10.1002/adfm.201503613
Ahn S H, Yu X W, Manthiram A. Adv. Mater., 2017, 29:1606534-1606543
doi: 10.1002/adma.201606534
Zhang C, Wang Y C, An B, et al. Adv. Mater., 2016, 29:1604556-1604562
Yang G, Choi W, Pu X, et al. Energy Environ. Sci., 2015, 8:1799-1807
doi: 10.1039/C5EE00682A
Liu J H, Shen A L, Wei X F, et al. ACS Appl. Mater. Interface, 2015, 7:20507-20512
doi: 10.1021/acsami.5b07554
Liu Y Y, Jiang H L, Zhu Y H, et al. J. Mater. Chem. A, 2016, 4:1694-1701
doi: 10.1039/C5TA10551J
Xiao J W, Chen C, Xi J B, et al. Nanoscale, 2015, 7:7056-7064
Zhu J B, Xiao M L, Liu C P, et al. J. Mater. Chem. A, 2015, 3:21451-21459
doi: 10.1039/C5TA06181D
Fu G T, Chen Y F, Cui Z M, et al. Nano Lett., 2016, 16:6516-6522
doi: 10.1021/acs.nanolett.6b03133
Deng D H, Yu L, Chen X Q, et al. Angew. Chem. Int. Ed., 2013, 5:371-375
Cao T, Wang D S, Zhang J T, et al. Chem. Eur. J., 2015, 21:14022-14029
doi: 10.1002/chem.201502040
Fu S F, Zhu C Z, Song J H, et al. Adv. Energy Mater., 2017, 7:1700363-1700381
doi: 10.1002/aenm.201700363
Liu S H, Wang Z Y, Zhou S, et al. Adv. Mater., 2017, 29:1700874-1700883
doi: 10.1002/adma.201700874
You B, Jiang N, Sheng M L, et al. ACS Catal., 2015, 5:7068-7076
doi: 10.1021/acscatal.5b02325
Meng J S, Niu C J, Xu L H, et al. J. Am. Chem. Soc., 2017, 139:8212-8221
doi: 10.1021/jacs.7b01942
Xia B Y, Yan Y, Li N, et al. Nat. Energy, 2016, 1:15006-15013
doi: 10.1038/nenergy.2015.6
Wang P W, Hayashi T, Meng Q A, et al. Small, 2017, 13:1601250-1601256
doi: 10.1002/smll.v13.4
Lu Z Y, Xu W W, Ma J, et al. Adv. Mater., 2016, 28:7155-7161
doi: 10.1002/adma.201504652
Chen Me J, Wang L, Yang H P, et al. J. Power Sources, 2017, 375:277-290
Andersen N I, Serov A, Atanassov P. Appl. Catal., B, 2015, 163:623-627
doi: 10.1016/j.apcatb.2014.08.033
Sun M, Zhang G, Liu H J, et al. Sci. China Mater., 2015, 58:683-692
doi: 10.1007/s40843-015-0082-x
Yang Z, Zhou X, Nie H, et al. ACS Appl. Mater. Interface, 2011, 3:2601-2606
doi: 10.1021/am200426q
Sun M, Dong Y Z, Zhang G, et al. J. Mater. Chem. A, 2014, 2:13635-13640
doi: 10.1039/C4TA02172J
Li Y G, Gong M, Liang Y Y, et al. Nat. Commun., 2013, 4:1805-1811
doi: 10.1038/ncomms2812
Seo B, Sa Y J, Woo J, et al. ACS Catal., 2016, 6:4347-4355
doi: 10.1021/acscatal.6b00553
Yang Z, Zhou X M, Jin Z P, et al. Adv. Mater., 2014, 26:3156-3161
doi: 10.1002/adma.201305513
Zhao Q, Yan Z H, Chen C C, et al. Chem. Rev., 2017, 117:10121-10211
doi: 10.1021/acs.chemrev.7b00051
Zhao A Q, Masa J, Xia W, et al. J. Am. Chem. Soc., 2014, 136:7551-7554
doi: 10.1021/ja502532y
Zhang H, Qiao H, Wang H Y, et al. Nanoscale, 2014, 6:10235-10242
doi: 10.1039/C4NR02125H
Li P X, Ma R G, Zhou Y, et al. RSC Adv., 2015, 5:73834-73841
doi: 10.1039/C5RA14713A
Yan W N, Bian W Y, Jin C, et al. Electrochim. Acta, 2015, 177:65-72
doi: 10.1016/j.electacta.2015.02.044
Yuvaraj S, Vignesh A, Shanmugam S, et al. Int. J. Hydrogen Energy, 2016, 41:15199-15207
doi: 10.1016/j.ijhydene.2016.06.115
Li J X, Zou M Z, Wen W W, et al. J. Mater. Chem. A, 2014, 2:10257-10262
doi: 10.1039/c4ta00960f
Shi J J, Lei K X, Sun W Y, et al. Nano Res., 2017, 10:3836-3847
doi: 10.1007/s12274-017-1597-0
Liu Z Q, Cheng H, Li N, et al. Adv. Mater., 2016, 28:3777-3784
doi: 10.1002/adma.201506197
Li J S, Li S L, Tang Y J, et al. Chem. Commun., 2015, 51:2710-2713
doi: 10.1039/C4CC09062D
Xiao Y, Hwang J Y, Sun Y K. J. Mater. Chem. A, 2016, 4:10379-10392
doi: 10.1039/C6TA03832H
Yang W X, Liu X J, Yue X Y, et al. J. Am. Chem. Soc., 2015, 137:1436-1439
doi: 10.1021/ja5129132
Zhang Y, Jiang W J, Guo L, et al. ACS Appl. Mater. Interface, 2015, 7:11508-11515
doi: 10.1021/acsami.5b02467
Guan B Y, Yu L, Lou X W. Energy Environ. Sci., 2016, 9:3092-3096
doi: 10.1039/C6EE02171A
Jiang W J, Gu L, Li L, et al. J. Am. Chem. Soc., 2016, 138:3570-3578
doi: 10.1021/jacs.6b00757
Pang M, Li C, Ding L, et al. Ind. Eng. Chem. Res., 2010, 49:4169-4174
doi: 10.1021/ie901741c
Xie J F, Xie Y. Chem. Eur. J., 2016, 22;3588-3598
doi: 10.1002/chem.201501120
Su C Y, Liu B H, Lin T J, et al. J. Mater. Chem. A, 2015, 3:18983-18990
doi: 10.1039/C5TA04383B
Youn D H, Bae G H, Han S, et al. J. Mater. Chem. A, 2013, 1:8007-8015
doi: 10.1039/c3ta11135k
Dong S M, Chen X, Zhang K J, et al. Chem. Commun., 2011, 47:11291-11293
doi: 10.1039/c1cc14427h
Yu X Y, Lou X W. Adv. Energy Mater., 2018, 8:1701592
doi: 10.1002/aenm.v8.3
Li H, Guo Z, Wang X W. J. Mater. Chem. A, 2017, 5:21353-21361
doi: 10.1039/C7TA06243E
Periasamy A P, Wu W P, Lin G L, et al. J. Mater. Chem. A, 2014, 2:11899-11904
doi: 10.1039/C4TA01713G
Han X P, Wu X Y, Zhong C, et al. Nano Energy, 2017, 37:541-550
Bayatsarmadi B, Zheng Y, Vasileff A, et al. Small, 2017, 13:1700191-1700209
doi: 10.1002/smll.v13.21
Chen Y J, Ji S F, Wang Y G, et al. Angew. Chem. Int. Ed., 2017, 129:7041-7046
doi: 10.1002/ange.201702473
Zhu C Z, Fu S F, Shi Q R, et al. Angew. Chem. Int. Ed., 2017, 56:13944-13960
doi: 10.1002/anie.201703864
Zhu C Z, Fu S F, Song J H, et al. Small, 2017, 13:1603407-1603413
doi: 10.1002/smll.v13.15
Chen P Z, Zhou T P, Xing L L, et al. Angew. Chem. Int. Ed., 2016, 56:610-615
Zhang J S, Chen Y, Wang X C. Energy Environ. Sci., 2015, 8:3092-3108
doi: 10.1039/C5EE01895A
Han C, Wang Y D, Lei Y P, et al. Nano Res., 2015, 8:1199-1209
doi: 10.1007/s12274-014-0600-2
Zheng Y, Jiao Y, Zhu Y H, et al. J. Am. Chem. Soc., 2017, 139:3336-3339
doi: 10.1021/jacs.6b13100
Guo S Y, Yuan P F, Zhang J N, et al. Chem. Commun., 2017, 53:9862-9865
doi: 10.1039/C7CC05476A
Chen P, Xiao T Y, Qian Y H, et al. Adv. Mater., 2013, 25:3192-3196
doi: 10.1002/adma.201300515
Peng S J, Li L L, Han X P, et al. Angew. Chem. Int. Ed., 2014, 5:12594-12599
Chen S, Duan J J, Jaroniec M, et al. Adv. Mater., 2014, 26:2925-2930
doi: 10.1002/adma.v26.18
Wang H, Jia J, Song P F, et al. Angew. Chem. Int. Ed., 2017, 56:7847-7852
doi: 10.1002/anie.201703720
Cheng Z H, Fu Q, Li C X, et al. J. Mater. Chem. A, 2016, 4:18240-18248
doi: 10.1039/C6TA07414F
Yang J, Sun H Y, Liang H Y, et al. Adv. Mater., 2016, 28:4606-4613
doi: 10.1002/adma.v28.23
Zhou X M, Tian Z M, Li J, et al. Nanoscale, 2014, 6:2603-2607
doi: 10.1039/c3nr05578g
Wang Q C, Lei Y P, Chen Z Y, et al. J. Mater. Chem. A, 2018, 6:516-526
doi: 10.1039/C7TA08423D
Li J C, Zhao S Y, Hou P X, et al. Nanoscale, 2015, 7:19201-19206
doi: 10.1039/C5NR05998D
Zhang L J, Wang X Y, Wang R H, et al. Chem. Mater., 2015, 27:7610-7618
doi: 10.1021/acs.chemmater.5b02708
Liang J, Zhou R F, Chen X M, et al. Adv. Mater., 2014, 26:6074-6079
doi: 10.1002/adma.201401848
Shi Q, Wang Y D, Wang Z M, et al. Nano Res., 2016, 9:317-328
doi: 10.1007/s12274-015-0911-y
Guo Q H, Zhao D, Liu S W, et al. Electrochim. Acta, 2014, 138:318-324
doi: 10.1016/j.electacta.2014.06.120
Tan P, Chen B, Xu H R, et al. Energy Environ. Sci., 2017, 10:2056-2080
doi: 10.1039/C7EE01913K
Liu Q, Wang Y B, Dai L M, et al. Adv. Mater., 2016, 28:3000-3006
doi: 10.1002/adma.201506112
Su C Y, Cheng H, Li W, et al. Adv. Energy Mater., 2017, 7:1602420-1602431
doi: 10.1002/aenm.201602420
Cheng H, Chen J M, Li Q J, et al. Chem. Commun., 2017, 53:11596-11599
doi: 10.1039/C7CC04099G
Yu M H, Wang Z K, Hou C, et al. Adv. Mater., 2017, 29:1602868-1602874
doi: 10.1002/adma.201602868
Ma T Y, Dai S, Qiao S Z. Mater. Today, 2016, 19:265-273
doi: 10.1016/j.mattod.2015.10.012
Cai X Y, Xia B Y, Franklin J, et al. J. Mater. Chem. A, 2017, 5:2488-2495
doi: 10.1039/C6TA09615H
Li S S, Cong H P, Wang P, et al. Nanoscale, 2014, 6:7534-7541
doi: 10.1039/C4NR02101K
Zeng S, Chen H Y, Wang H, et al. Small, 2017, 13:1700518-1700525
doi: 10.1002/smll.v13.29
Fu J, Hassan F M, Li J D, et al. Adv. Mater., 2016, 28:6421-6428
doi: 10.1002/adma.201600762
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057