Citation: BAI Ming-Cheng, PAN Ming-Yan, WANG Lin, QI Hong-Ji, WANG Hu. Synthesis, Structure, and Properties of Zintl Phase Compound α-BaZn2P2[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(2): 277-282. doi: 10.11862/CJIC.2018.056 shu

Synthesis, Structure, and Properties of Zintl Phase Compound α-BaZn2P2

  • Corresponding author: WANG Lin, wanglinn@shu.edu.cn
  • Received Date: 8 September 2017
    Revised Date: 22 December 2017

Figures(5)

  • A Zintl phase compound α-BaZn2P2, was synthesized through the high-temperature Sn-flux reaction. Single-crystal X-ray diffraction was used to accurately determine its structure, which is similar to α-BaCu2S2-type structure (Pnma). The cell parameters of α-BaZn2P2 are a=0.976 78(5) nm, b=0.413 34(2) nm, c=1.060 55(5) nm. Unlike high-temperature-phase β-BaZn2P2, which has a layer structure, low-temperature-phase α-BaZn2P2 has a three-dimensional network structure, where ZnP4 tetrahedra form an anion frame by sharing sides or vertices, with Ba2+ cations residing within. The band structure and state density of the compound were calculated using density functional theory. The results indicate that the compound is a narrow-bandgap semiconductor (Eg=0.4 eV). In addition, differential scanning calorimetry and temperature-dependent XRD results show that α-BaZn2P2 decomposes into binary phases like Ba4P5 and ZnP4 at high temperatures.
  • 加载中
    1. [1]

      Miller G J, Schmidt M W, Wang F, et al. Struct. Bond., 2011, 139:1-57  doi: 10.1007/978-3-642-21150-8

    2. [2]

      Wang F, Miller G J. Inorg. Chem., 2011, 50:7625-7636

    3. [3]

      Bojin M D, Hoffmann R. Helv. Chim. Acta, 2003, 86:1653-1682
       

    4. [4]

      Pan M Y, Xia S Q, Liu X, et al. Eur. J. Inorg. Chem., 2015, 46(33):2724-2731

    5. [5]

      Brown S R, Kauzlarich S M, Gascoin F, et al. Chem. Mater., 2006, 18(7):1873-1877

    6. [6]

      ZHAO Li-Dong. Journal of Xihua University:Natural Science Edition, 2015(1):1-13

    7. [7]

      Ban Z, Sikirica M. Acta Crystallogr., 1965, 18:594-599  doi: 10.1107/S0365110X6500141X

    8. [8]

      Rotter M, Pangerl M, Tegel M, et al. Angew. Chem. Int. Ed., 2008, 47(41):7949-7952  doi: 10.1002/anie.v47:41

    9. [9]

      Rotter M, Tegel M, Johrendt D, et al. Phys. Rev. B, 2008, 78(2):1436-1446

    10. [10]

      Condron C L, Hope H, Piccoli P M, et al. Inorg. Chem., 2007, 46(11):4523-4529  doi: 10.1021/ic070078h

    11. [11]

      Gladyshevskii E I, Kripyakevich P I, Bodak O I. Ukr. Fiz. Zh., 1967, 12:447-452

    12. [12]

      Sun J, Singh D J. J. Mater. Chem. A, 2017, 5(18):8499-8509
       

    13. [13]

      Iglesia J E, Pachali K E, Steinfink H. J. Solid State Chem., 1974, 9(1):6-14
       

    14. [14]

      Huster J, Bronger W. Z. Anorg. Allg. Chem., 1999, 625:2033-2040

    15. [15]

      Leoni S, Carrillo-Cabrera W, Schnelle W, et al. Solid State Sci., 2003, 5(1):139-148  doi: 10.1016/S1293-2558(02)00088-2

    16. [16]

      Klüfers P, Mewis A. Z. Naturforsch., B:Chem. Sci., 1978, 33(2):151-155
       

    17. [17]

      Sheldrick G M. SHELX-2014, Program for the Solution and the Refinement of Crystal Structures, University of Göttingen, Germany, 2014.

    18. [18]

      Shein I R, Ivanovskii A L. J. Alloys Compd., 2014, 583:100-105  doi: 10.1016/j.jallcom.2013.08.118

    19. [19]

      Kresse G, Joubert D. Phys. Rev. B, 1999, 59(3):1758-1775
       

    20. [20]

      Kresse G, Furthmuller J. Phys. Rev. B, 1996, 54(16):11169-11186

    21. [21]

      Perdew J P, Burke S, Ernzerhof M. Phys. Rev. Lett., 1996, 77(18):3865-3868

  • 加载中
    1. [1]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    2. [2]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    3. [3]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    6. [6]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    7. [7]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    8. [8]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    11. [11]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    12. [12]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    15. [15]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    18. [18]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    19. [19]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    20. [20]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

Metrics
  • PDF Downloads(10)
  • Abstract views(1421)
  • HTML views(203)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return