Citation: LI Ai-Chang, LI Gui-Hua, JI Xiao-Yan, ZHAI Tian-Hua. Ag@AgI/Ni Thin Films:Preparation and Photocatalytic Properties under Simulated Solar Irradiation[J]. Chinese Journal of Inorganic Chemistry, ;2017, 33(12): 2247-2254. doi: 10.11862/CJIC.2017.277 shu

Ag@AgI/Ni Thin Films:Preparation and Photocatalytic Properties under Simulated Solar Irradiation

  • Corresponding author: LI Ai-Chang, aichangli@hotmail.com
  • Received Date: 17 June 2017
    Revised Date: 28 August 2017

Figures(9)

  • Ag@AgI/Ni thin films plasmonic photocatalyst were prepared by electrochemical method. The surface morphology, phase structure, optical characteristics and band structure of the thin film were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), respectively. Its photocatalytic properties and stability were evaluated with rhodamine B(RhB) as a model compound under the simulated solar irradiation. Using a method of adding active species scavenger to the solution, mechanism of photocatalytic degradation of the films was explored. The Ag@AgI/Ni thin films prepared under the optimized preparation conditions are composed of AgI micron-sized particles coated with Ag nanocrystals, which have a significant surface plasmon resonance (SPR) effect. The thin film exhibits a maximum photocatalytic activity and a superior photocatalytic stability to decompose RhB. The photodegradation rate of the Ag@AgI/Ni thin films under the simulated solar irradiation 60 min (i.e., 81.1%) is 1.35 times greater than that of AgI/Ni thin film, and 1.61 times greater than that of P25 TiO2/ITO thin film. The photocatalytic activity almost keeps unchanged after five recycled experiments. The improvement in photocatalytic activity for Ag@AgI/Ni thin film can be mainly attributed to the activation of nano Ag particles on the film for photocathode reaction with a significant SPR effects. In addition, the photodegradation mechanism of the films for RhB under the simulated solar irradiation was also discussed.
  • 加载中
    1. [1]

      Zhou Y, Krumeich F, Heel A, et al. Dalton Trans., 2010, 39:6043-6048  doi: 10.1039/b926790e

    2. [2]

      Jack R S, Ayoko G A, Adebajo M O, et al. Environ. Sci. Pollut. Res. Int., 2015, 22:7439-7449  doi: 10.1007/s11356-015-4346-5

    3. [3]

      HU Teng, YE Long-Qiang, LI Wen-Ling, et al. Chinese J. Inorg. Chem., 2014, 30(8):1778-1782
       

    4. [4]

      Yin L F, Shen Z Y, Niu J F, et al. Environ. Sci. Technol., 2010, 44:9117-9122  doi: 10.1021/es1025432

    5. [5]

      Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293:269-271  doi: 10.1126/science.1061051

    6. [6]

      Yu H G, Irie H, Hashimoto K. J. Am. Chem. Soc., 2010, 132:6898-6899  doi: 10.1021/ja101714s

    7. [7]

      Liu G, Yu J C, Lu G Q, et al. Chem. Commun., 2011, 47:6763-6783  doi: 10.1039/c1cc10665a

    8. [8]

      Wang P, Huang B, Dai Y, et al. Phys. Chem. Chem. Phys., 2012, 14(28):9813-9825  doi: 10.1039/c2cp40823f

    9. [9]

      Zheng Y, Lin L H, Wang B, et al. Angew. Chem. Int. Ed., 2015, 54:12868-12884  doi: 10.1002/anie.v54.44

    10. [10]

      Wang Z, Liu Y, Huang B, et al. Phys. Chem. Chem. Phys., 2014, 16:2758-2774  doi: 10.1039/c3cp53817f

    11. [11]

      Lou Z, Wang Z, Huang B, et al. ChemCatChem, 2014, 6(9):2456-2476  doi: 10.1002/cctc.201402261

    12. [12]

      Callegari A, Tonti D, Chergui M. Nano Lett., 2003, 3(11):1565-1568  doi: 10.1021/nl034757a

    13. [13]

      ZHU Ming-Shan, CHEN Peng-Lei, LIU Ming-Hua. Prog. Chem., 2013, 25(2/3):210-220

    14. [14]

      Wang P, Huang B B, Zhang X, et al. Chem.-Eur. J., 2009, 15(8):1821-1824  doi: 10.1002/chem.v15:8

    15. [15]

      Wang P, Huang B B, Lou Z Z, et al. Chem.-Eur. J., 2010, 16(2):538-544  doi: 10.1002/chem.v16:2

    16. [16]

      Hu C, Peng T W, Hu X X, et al. J. Am. Chem. Soc., 2010, 132(2):857-862  doi: 10.1021/ja907792d

    17. [17]

      Zhu M S, Chen P L, Liu M H. ACS Nano, 2011, 5(6):4529-4536  doi: 10.1021/nn200088x

    18. [18]

      AN Wei-Jia, LIU Li, LI Xin-Lei, et al. Chinese J. Inorg. Chem., 2015, 31(2):329-337
       

    19. [19]

      Kumar S. J. Mater. Sci.-Mater. Electron., 2011, 22:244-247  doi: 10.1007/s10854-010-0122-y

    20. [20]

      An C H, Wang J Z, Liu J X, et al. RSC Adv., 2014, 4:2409-2413  doi: 10.1039/C3RA46527F

    21. [21]

      LI Ai-Chang, ZHU Ning-Ning, LI Jing-Hong, et al. Chinese J. Inorg. Chem., 2015, 31(4):681-688
       

    22. [22]

    23. [23]

      Wang D, Duan Y, Luo Q, et al. Desalination, 2011, 270:174-180  doi: 10.1016/j.desal.2010.11.042

    24. [24]

      Chen G, Zhang X, Wang B, et al. Appl. Phys. Lett., 1999, 75(1):10-12  doi: 10.1063/1.124260

    25. [25]

      Zhou X, Liu G, Yu J, et al. J. Mater. Chem., 2012, 22:21337-21354  doi: 10.1039/c2jm31902k

    26. [26]

      Rycenga M, Cobley C M, Zeng J, et al. Chem. Rev., 2011, 111:3669-3712  doi: 10.1021/cr100275d

    27. [27]

      Linic S, Christopher P, Ingram D B. Nat. Mater., 2011, 10:911-921  doi: 10.1038/nmat3151

    28. [28]

      YANG Juan, DAI Jun, ZHAO Jin-Cai, et al. Chin. Sci. Bull., 2009, 54(15):2196-2204

    29. [29]

      LI Ai-Chang, SONG Min, ZHAO Sha-Sha, et al. Chinese J. Inorg. Chem., 2016, 2(9):1543-1551
       

    30. [30]

      LI Ai-Chang, LI Gui-Hua, ZHENG Yan, et al. Acta Phys.-Chim. Sin., 2012, 28(2):457-464

    31. [31]

      LI Ai-Chang, LI Jian-Fei, LIU Ya-Lu, et al. Acta Chim. Sinica, 2013, 71(5):815-821

    32. [32]

      Liu Q, Zhou Y, Kou J, et al. J. Am. Chem. Soc., 2010, 132(41):14385-14387  doi: 10.1021/ja1068596

    33. [33]

      ZHOU Li, DENG Hui-Ping, ZHANG Wei. Prog. Chem., 2015, 27(4):349-360

    34. [34]

      An C H, Wang Z J, Liu J X, et al. ChemSusChem, 2013, 6(10):1931-937  doi: 10.1002/cssc.v6.10

    35. [35]

      Jiang J, Zhang L. Chem.-Eur. J., 2011, 17:3710-3717  doi: 10.1002/chem.v17.13

    36. [36]

      WANG En-Hua, LIU Su-Wen, LI Tang-Gang, et al. Chinese J. Inorg. Chem., 2011, 27(3):537-541
       

  • 加载中
    1. [1]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    2. [2]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    3. [3]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    6. [6]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    7. [7]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    8. [8]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    9. [9]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    12. [12]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    14. [14]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    15. [15]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    16. [16]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    17. [17]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    18. [18]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    19. [19]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    20. [20]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

Metrics
  • PDF Downloads(8)
  • Abstract views(2759)
  • HTML views(369)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return