Citation: GUO Wen-Ming, ZHONG Min. Research Progress on Preparation Technology and Stability of Perovskite Solar Cells[J]. Chinese Journal of Inorganic Chemistry, ;2017, 33(7): 1097-1118. doi: 10.11862/CJIC.2017.152 shu

Research Progress on Preparation Technology and Stability of Perovskite Solar Cells

  • Corresponding author: ZHONG Min, zhongmin@cjlu.edu.cn
  • Received Date: 16 February 2017
    Revised Date: 8 May 2017

Figures(15)

  • Due to the simple preparation process, low cost and excellent photoelectric conversion efficiency, organic-inorganic hybrid perovskite solar cell has become a research hotspot in the field of photovoltaic technology.The perovskite optical absorption material has the advantages of high extinction coefficient, high carrier mobility, long carrier diffusion distance, long carrier lifetime, adjustable band gap, and a variety of preparation methods.In recent years, the efficiency of perovskite solar cells increased from the initial 3.8% in 2009 to the current 22.1%.In order to obtain long-term stable and high efficient perovskite solar cell at present, main research ideas have the following aspects including new structure design for solar cell, morphology design for functional layer, interface modification between each functional layer, selection of hole transport material and selection of counter electrode.Based on the review of the research progress of the perovskite solar cell, we first introduced the structure and working principle of the perovskite solar cell in this paper.Besides, the preparation process and various modification methods of electron transport layer were emphatically summarized.The electron transport layer plays a role in the transport of electrons and blocking holes in the structure of the perovskite solar cell.The energy level of electron transport layer can be controlled by doping technology to obtain better photoelectric conversion efficiency.The introduction of modification material on the electron transport layer can improve the morphology of the perovskite optical absorption layer, which can enhance the transmission and collection efficiency of the charge to improve the photoelectric conversion efficiency of the device.Afterwards, the synthesis optimization methods of the perovskite films were also discussed.The morphology and crystallinity of perovskite films can directly affect the optical trapping efficiency and short circuit current density.Therefore, high quality perovskite thin films were obtained by means of synthesis optimization, solvent engineering and annealing engineering.Moreover, we analyzed the reasons for the poor stability of perovskite solar cells, and then put forward the strategy to improve the stability of the solar cell.Finally, the commercial prospects of perovskite solar cells are forecasted.
  • 加载中
    1. [1]

    2. [2]

      Kojima A, Teshima K, Shirai Y, et al. J. Am. Chem. Soc., 2009, 131(17):6050-6051  doi: 10.1021/ja809598r

    3. [3]

      Im J H, Lee C R, Lee J W, et al. Nanoscale, 2011, 3(10):4088-4093  doi: 10.1039/c1nr10867k

    4. [4]

      Kim H S, Lee C R, Im J H, et al. Sci. Rep., 2012, 2:591-598

    5. [5]

      Burschka J, Pellet N, Moon S J, et al. Nature, 2013, 499(7458):316-319  doi: 10.1038/nature12340

    6. [6]

      Jeon N J, Noh J H, Kim Y C, et al. Nat. Mater., 2014, 13(9):897-903  doi: 10.1038/nmat4014

    7. [7]

      Green M A, Ho-Baillie A, Snaith H J. Nat. Photonics, 2014, 8(7):506-514  doi: 10.1038/nphoton.2014.134

    8. [8]

      Yang W S, Noh J H, Jeon N J, et al. Science, 2015, 348(6240):1234-1237  doi: 10.1126/science.aaa9272

    9. [9]

      Saliba M, Matsui T, Seo J Y, et al. Energy Environ. Sci., 2016, 9(6):1989-1997  doi: 10.1039/C5EE03874J

    10. [10]

      Bi D, Yi C, Luo J, et al. Nat. Energy, 2016, 1:16142-16147  doi: 10.1038/nenergy.2016.142

    11. [11]

      Chung I, Lee B, He J, et al. Nature, 2012, 485(7399):486-489  doi: 10.1038/nature11067

    12. [12]

      Lee M M, Teuscher J, Miyasaka T, et al. Science, 2012, 338(6107):643-647  doi: 10.1126/science.1228604

    13. [13]

      Cao K, Zuo Z, Cui J, et al. Nano Energy, 2015, 17:171-179  doi: 10.1016/j.nanoen.2015.08.009

    14. [14]

      Xu X, Liu Z, Zuo Z, et al. Nano Lett., 2015, 15(4):2402-2408  doi: 10.1021/nl504701y

    15. [15]

      Son D Y, Bae K H, Kim H S, et al. J. Phys. Chem. C, 2015, 119(19):10321-10328  doi: 10.1021/acs.jpcc.5b03276

    16. [16]

      Kim H S, Lee J W, Yantara N, et al. Nano Lett., 2013, 13(6):2412-2417  doi: 10.1021/nl400286w

    17. [17]

      Qiu J, Qiu Y, Yan K, et al. Nanoscale, 2013, 5(8):3245-3248  doi: 10.1039/c3nr00218g

    18. [18]

      Gao X, Li J, Baker J, et al. Chem. Commun., 2014, 50(48):6368-6371  doi: 10.1039/C4CC01864H

    19. [19]

      Zhu Q, Bao X, Yu J, et al. ACS Appl. Mater. Interfaces, 2016, 8(4):2652-2657  doi: 10.1021/acsami.5b10555

    20. [20]

      Hou F, Su Z, Jin F, et al. Nanoscale, 2015, 7(21):9427-9432  doi: 10.1039/C5NR01864A

    21. [21]

      You J, Meng L, Song T B, et al. Nat. Nanotech., 2016, 11(1):75-81

    22. [22]

      Chen W, Wu Y, Yue Y, et al. Science, 2015, 350(6263):944-948  doi: 10.1126/science.aad1015

    23. [23]

      Meng T, Liu C, Wang K, et al. ACS Appl. Mater. Interfaces, 2016, 8(3):1876-1883  doi: 10.1021/acsami.5b09873

    24. [24]

      Zhang J, Pauporteé T. J. Phys. Chem. C, 2015, 119(27):14919-14928  doi: 10.1021/acs.jpcc.5b02984

    25. [25]

      Dong Q, Shi Y, Wang K, et al. J. Phys. Chem. C, 2015, 119(19):10212-10217  doi: 10.1021/acs.jpcc.5b00541

    26. [26]

      Ke W, Fang G, Liu Q, et al. J. Am. Chem. Soc., 2015, 137(21):6730-6733  doi: 10.1021/jacs.5b01994

    27. [27]

      Hwang I, Yong K. ACS Appl. Mater. Interfaces, 2016, 8(6):4226-4232  doi: 10.1021/acsami.5b12336

    28. [28]

      Yue Y, Umeyama T, Kohara Y, et al. J. Phys. Chem. C, 2015, 119(40):22847-22854  doi: 10.1021/acs.jpcc.5b07950

    29. [29]

      Guillemin S, Appert E, Roussel H, et al. J. Phys. Chem. C, 2015, 119(37):21694-21703  doi: 10.1021/acs.jpcc.5b06180

    30. [30]

      Li C, Li Y, Xing Y, et al. ACS Appl. Mater. Interfaces, 2015, 7(28):15117-15122  doi: 10.1021/acsami.5b01959

    31. [31]

      Giordano F, Abate A, Baena J P C, et al. Nat. Commun., 2016, 7:10379-10385  doi: 10.1038/ncomms10379

    32. [32]

      Chen C, Cheng Y, Dai Q, et al. Sci. Rep., 2015, 5:17684-17696

    33. [33]

      Kim I S, Haasch R T, Cao D H, et al. ACS Appl. Mater. Interfaces, 2016, 8(37):24310-24314  doi: 10.1021/acsami.6b07658

    34. [34]

      Choi J M, Song S, Hörantner M T, et al. ACS nano, 2016, 10(6), 6029-6036  doi: 10.1021/acsnano.6b01575

    35. [35]

      Wojciechowski K, Saliba M, Leijtens T, et al. Energy Environ. Sci., 2014, 7(3):1142-1147  doi: 10.1039/C3EE43707H

    36. [36]

      Ke W, Fang G, Wang J, et al. ACS Appl. Mater. Interfaces, 2014, 6(18):15959-15965  doi: 10.1021/am503728d

    37. [37]

      Su T S, Hsieh T Y, Hong C Y, et al. Sci. Rep., 2015, 5:16098-16106  doi: 10.1038/srep16098

    38. [38]

      Zanoni K P S, Amaral R C, Murakami Iha N Y. ACS Appl. Mater. Interfaces, 2014, 6(13):10421-10428  doi: 10.1021/am501955f

    39. [39]

      Bera A, Wu K, Sheikh A, et al. J. Phys. Chem. C, 2014, 118(49):28494-28501  doi: 10.1021/jp509753p

    40. [40]

      Yella A, Heiniger L P, Gao P, et al. Nano Lett., 2014, 14(5):2591-2596  doi: 10.1021/nl500399m

    41. [41]

      Son D Y, Im J H, Kim H S, et al. J. Phys. Chem. C, 2014, 118(30):16567-16573  doi: 10.1021/jp412407j

    42. [42]

      Liu D, Kelly T L. Nat. Photonics, 2014, 8(2):133-138

    43. [43]

      Li Y, Wang J, Kong Y, et al. Sci. Rep., 2016, 6:19187-19196  doi: 10.1038/srep19187

    44. [44]

      Sun J, Bian J, Chen L, et al. Appl. Surf. Sci., 2013, 276:782-786  doi: 10.1016/j.apsusc.2013.03.171

    45. [45]

      Li C, Fang G, Li J, et al. J. Phys. Chem. C, 2008, 112(4):990-995  doi: 10.1021/jp077133s

    46. [46]

      Devaraj R, Venkatachalam K, Razad P M. J. Mater. Sci-Mater. Electron., 2016, 27(4):4011-4018  doi: 10.1007/s10854-015-4255-x

    47. [47]

      Lockett A M, Thomas P J, OBrien P. J. Phys. Chem. C, 2012, 116(14):8089-8094  doi: 10.1021/jp211121d

    48. [48]

      Liu Z, Lei E, Ya J, et al. Appl. Surf. Sci., 2009, 255(12):6415-6420  doi: 10.1016/j.apsusc.2009.02.030

    49. [49]

      Zhong M, Guo W M, Li C L, et al. J. Alloys Compd., 2017, doi:10.1016/j.jallcom.2017.05.154  doi: 10.1016/j.jallcom.2017.05.154

    50. [50]

       

    51. [51]

      Guarnera S, Abate A, Zhang W, et al. J. Phys. Chem. Lett., 2015, 6(3):432-437  doi: 10.1021/jz502703p

    52. [52]

       

    53. [53]

      Kumar S, Dhar A. ACS Appl. Mater. Interfaces, 2016, 8(28):18309-18320  doi: 10.1021/acsami.6b06878

    54. [54]

      Li X, Dai S M, Zhu P, et al. ACS Appl. Mater. Interfaces, 2016, 8(33):21358-21365  doi: 10.1021/acsami.6b05971

    55. [55]

      Sarkar A, Jeon N J, Noh J H, et al. J. Phys. Chem. C, 2014, 118(30):16688-16693  doi: 10.1021/jp412655p

    56. [56]

      Dkhissi Y, Meyer S, Chen D, et al. ChemSusChem, 2016, 9(7):687-695  doi: 10.1002/cssc.201501659

    57. [57]

      Bi D, Boschloo G, Schwarzmüller S, et al. Nanoscale, 2013, 5(23):11686-11691  doi: 10.1039/c3nr01542d

    58. [58]

      Mahmood K, Swain B S, Amassian A. Adv. Energy Mater., 2015, 5(17):1500568-1500579  doi: 10.1002/aenm.201500568

    59. [59]

       

    60. [60]

       

    61. [61]

       

    62. [62]

       

    63. [63]

    64. [64]

      Zhang L, Zhong M, Ge H L. Appl. Surf. Science, 2011, 258(4):1551-1554  doi: 10.1016/j.apsusc.2011.09.128

    65. [65]

      Zhang L, Ge H L, Zhong M. Adv. Mater. Res., 2012, 562-564:250-254

    66. [66]

      Zhong M, Sheng D, Li C L, et al. Sol. Energy Mater. Sol. Cells, 2014, 121:22-27  doi: 10.1016/j.solmat.2013.10.026

    67. [67]

    68. [68]

    69. [69]

      Wang R, Tan H, Zhao Z, et al. J. Mater. Chem. A, 2014, 2(20):7313-7318  doi: 10.1039/C4TA00455H

    70. [70]

      Yang Z, Ren J, Zhang Z, et al. Chem. Rev., 2015, 115(11):5159-5223  doi: 10.1021/cr5006217

    71. [71]

      Wang Y, Zheng Y Z, Lu S, et al. ACS Appl. Mater. Interfaces, 2015, 7(11):6093-6101  doi: 10.1021/acsami.5b00980

    72. [72]

      Wang R, Xu X, Zhang Y, et al. Nanoscale, 2015, 7(25):11082-11092  doi: 10.1039/C5NR02127H

    73. [73]

      Mali S S, Shim C S, Park H K, et al. Chem. Mater., 2015, 27(5):1541-1551  doi: 10.1021/cm504558g

    74. [74]

      Wang M, Huang C, Cao Y, et al. Appl. Phys. Lett., 2009, 94(26):263506-263509  doi: 10.1063/1.3167811

    75. [75]

      Li S Z, Gan C L, Cai H, et al. Appl. Phys. Lett., 2007, 90(26):263106-263109  doi: 10.1063/1.2752020

    76. [76]

      Mahmood K, Swain B S, Amassian A. Nanoscale, 2015, 7(30):12812-12819  doi: 10.1039/C5NR02874D

    77. [77]

      Sáenz-Trevizo A, Amézaga-Madrid P, Pizá-Ruiz P, et al. Mater. Charact., 2015, 105:64-70  doi: 10.1016/j.matchar.2015.04.020

    78. [78]

      Lei J, Liu S, Du K, et al. Electrochim. Acta, 2015, 171:66-71  doi: 10.1016/j.electacta.2015.05.014

    79. [79]

      Kwiatkowski M, Bezverkhyy I, Skompska M. J. Mater. Chem. A, 2015, 3(24):12748-12760  doi: 10.1039/C5TA01087J

    80. [80]

      Hernández S, Cauda V, Hidalgo D, et al. J. Alloys Compd., 2014, 615:S530-S537  doi: 10.1016/j.jallcom.2014.02.010

    81. [81]

      Ji X, Liu W, Leng Y, et al. J. Nanomater. 2015:647089-647094

    82. [82]

      Hernández S, Cauda V, Chiodoni A, et al. ACS Appl. Mater. Interfaces, 2014, 6(15):12153-12167  doi: 10.1021/am501379m

    83. [83]

      Kwiatkowski M, Bezverkhyy I, Skompska M. J. Mater. Chem. A, 2015, 3(24):12748-12760  doi: 10.1039/C5TA01087J

    84. [84]

      Yeh M H, Lin L Y, Chou C Y, et al. Nano Energy, 2013, 2(5):609-621  doi: 10.1016/j.nanoen.2013.07.013

    85. [85]

       

    86. [86]

       

    87. [87]

       

    88. [88]

      Zhong M, Yu J J, Wei Z H, et al. Adv. Mater. Res., 2012, 562-564:260-264

    89. [89]

      Wei Z H, Zhong M, Deng Y. Adv. Mater. Res., 2012, 562-564:255-259

    90. [90]

      Pathak S K, Abate A, Ruckdeschel P, et al. Adv. Funct. Mater., 2014, 24(38):6046-6055  doi: 10.1002/adfm.201401658

    91. [91]

      Wang J, Qin M, Tao H, et al. Appl. Phys. Lett., 2015, 106(12):121104-121109  doi: 10.1063/1.4916345

    92. [92]

      Zhang H, Shi J, Xu X, et al. J. Mater. Chem. A, 2016, 4(40):15383-15389  doi: 10.1039/C6TA06879K

    93. [93]

      Zhang X, Bao Z, Tao X, et al. RSC Adv., 2014, 4(109):64001-6400  doi: 10.1039/C4RA11155A

    94. [94]

      Zhou H, Chen Q, Li G, et al. Science, 2014, 345(6196):542-546  doi: 10.1126/science.1254050

    95. [95]

      Wang J T W, Ball J M, Barea E M, et al. Nano Lett., 2014, 14(2):724-730  doi: 10.1021/nl403997a

    96. [96]

      Wojciechowski K, Stranks S D, Abate A, et al. ACS Nano, 2014, 8(12):12701-12709  doi: 10.1021/nn505723h

    97. [97]

      Zuo L, Gu Z, Ye T, et al. J. Am. Chem. Soc., 2015, 137(7):2674-2679  doi: 10.1021/ja512518r

    98. [98]

      Han G S, Chung H S, Kim B J, et al. J. Mater. Chem. A, 2015, 3(17):9160-9164  doi: 10.1039/C4TA03684K

    99. [99]

      Ogomi Y, Morita A, Tsukamoto S, et al. J. Phys. Chem. C, 2014, 118(30):16651-16659  doi: 10.1021/jp412627n

    100. [100]

      Shih Y C, Wang L Y, Hsieh H C, et al. J. Mater. Chem. A, 2015, 3(17):9133-9136  doi: 10.1039/C5TA01526J

    101. [101]

      Li B, Chen Y, Liang Z, et al. RSC Adv., 2015, 5(114):94290-94295  doi: 10.1039/C5RA17129F

    102. [102]

      Dong H P, Li Y, Wang S F, et al. J. Mater. Chem. A, 2015, 3(18):9999-10004  doi: 10.1039/C5TA00407A

    103. [103]

      Li X, Dar M I, Yi C, et al. Nat. Chem., 2015, 7(9):703-711  doi: 10.1038/nchem.2324

    104. [104]

      Cao J, Yin J, Yuan S, et al. Nanoscale, 2015, 7(21):9443-9447  doi: 10.1039/C5NR01820J

    105. [105]

      Yang D, Zhou X, Yang R, et al. Energy Environ. Sci., 2016, 9(10):3071-3078  doi: 10.1039/C6EE02139E

    106. [106]

      Liu Z, Chen Q, Hong Z, et al. ACS Appl. Mater. Interfaces, 2016, 8(17):11076-11083  doi: 10.1021/acsami.5b12123

    107. [107]

      Cojocaru L, Uchida S, Sanehira Y, et al. Chem. Lett., 2015, 44(5):674-676  doi: 10.1246/cl.150068

    108. [108]

      Ma Y, Wang S, Zheng L, et al. Chin. J. Chem., 2014, 32(10):957-963  doi: 10.1002/cjoc.201400435

    109. [109]

      Kim H S, Lee C R, Im J H, et al. Sci. Rep., 2012, 2:591-598

    110. [110]

      Barrows A T, Pearson A J, Kwak C K, et al. Energy Environ. Sci., 2014, 7(9):2944-2950  doi: 10.1039/C4EE01546K

    111. [111]

      Deng Y, Peng E, Shao Y, et al. Energy Environ. Sci., 2015, 8(5):1544-1550  doi: 10.1039/C4EE03907F

    112. [112]

      Liu M, Johnston M B, Snaith H J. Nature, 2013, 501(7467):395-398  doi: 10.1038/nature12509

    113. [113]

      Burschka J, Pellet N, Moon S J, et al. Nature, 2013, 499(7458):316-319  doi: 10.1038/nature12340

    114. [114]

      Kwon Y S, Lim J, Yun H J, et al. Energy Environ. Sci., 2014, 7(4):1454-1460  doi: 10.1039/c3ee44174a

    115. [115]

      Liu J, Shirai Y, Yang X, et al. Adv. Mater., 2015, 27:4918-4923  doi: 10.1002/adma.v27.33

    116. [116]

      Huang J, Xu P, Liu J, et al. Small, 2017, 13:1603225-1603234  doi: 10.1002/smll.v13.10

    117. [117]

      Dualeh A, Gao P, Seok S I, et al. Chem. Mater., 2014, 26(21):6160-6164  doi: 10.1021/cm502468k

    118. [118]

      Chen Q, Zhou H, Song T B, et al. Nano Lett., 2014, 14(7):4158-4163  doi: 10.1021/nl501838y

    119. [119]

      Zhang T, Guo N, Li G, et al. Nano Energy, 2016, 26:50-56  doi: 10.1016/j.nanoen.2016.05.003

    120. [120]

      Li Y, Sun W, Yan W, et al. Adv. Energy Mater., 2016, 6(24):1601353-1601360  doi: 10.1002/aenm.201601353

    121. [121]

      Chen J, Xiong Y, Rong Y, et al. Nano Energy, 2016, 27:130-137  doi: 10.1016/j.nanoen.2016.06.047

    122. [122]

      Jeon N J, Noh J H, Kim Y C, et al. Nature Mater., 2014, 13(9):897-903  doi: 10.1038/nmat4014

    123. [123]

      Xiao M, Huang F, Huang W, et al. Angew. Chem., 2014, 126(37):10056-10061  doi: 10.1002/ange.201405334

    124. [124]

      Kim H, Jeong H, Lee J K. Chem. Asian J., 2016, 11(17):2399-2405  doi: 10.1002/asia.201600722

    125. [125]

      Wu Q, Zhou P, Zhou W, et al. ACS Appl. Mater. Interfaces, 2016, 8(24):15333-15340  doi: 10.1021/acsami.6b03276

    126. [126]

      Ye F, Chen H, Xie F, et al. Energy Environ. Sci., 2016, 9(7):2295-2301  doi: 10.1039/C6EE01411A

    127. [127]

      Yin M, Xie F, Chen H, et al. J. Mater. Chem. A, 2016, 4(22):8548-8553  doi: 10.1039/C6TA02490D

    128. [128]

      Li L, Chen Y, Liu Z, et al. Adv. Mater., 2016, 28(44):9862-9868  doi: 10.1002/adma.201603021

    129. [129]

      Xiao J, Yang Y, Xu X, et al. J. Mater. Chem. A, 2015, 3(10):5289-5293  doi: 10.1039/C4TA06700B

    130. [130]

      Li Y, Cooper J K, Buonsanti R, et al. J. Phys. Chem. Lett., 2015, 6(3):493-499  doi: 10.1021/jz502720a

    131. [131]

      Dong G, Yang Y, Sheng L, et al. RSC Adv., 2016, 6(50):44034-44040  doi: 10.1039/C6RA07497A

    132. [132]

       

    133. [133]

      Chen L, Tang F, Wang Y, et al. Nano Res., 2015, 8(1):263-270  doi: 10.1007/s12274-014-0662-1

    134. [134]

      Nguyen W H, Bailie C D, Unger E L, et al. J. Am. Chem. Soc., 2014, 136(31):10996-11001  doi: 10.1021/ja504539w

    135. [135]

      Burschka J, Dualeh A, Kessler F, et al. J. Am. Chem. Soc., 2011, 133(45):18042-18045  doi: 10.1021/ja207367t

    136. [136]

      Zhang H, Shi Y, Yan F, et al. Chem. Commun., 2014, 50(39):5020-5022  doi: 10.1039/c3cc49458f

    137. [137]

      Yue Y, Salim N, Wu Y, et al. Adv. Mater., 2016, 28:10738-10743  doi: 10.1002/adma.201602822

    138. [138]

       

    139. [139]

      Yang W S, Noh J H, Jeon N J, et al. Science, 2015, 348(6240):1234-1237  doi: 10.1126/science.aaa9272

    140. [140]

      Zhu Z, Bai Y, Lee H K H, et al. Adv. Funct. Mater., 2014, 24(46):7357-7365  doi: 10.1002/adfm.v24.46

    141. [141]

      Yeo J S, Kang R, Lee S, et al. Nano Energy, 2015, 12:96-104  doi: 10.1016/j.nanoen.2014.12.022

    142. [142]

      Liu J, Wu Y, Qin C, et al. Energy Environ. Sci., 2014, 7:2963-2967  doi: 10.1039/C4EE01589D

    143. [143]

      Ye S, Sun W, Li Y, et al. Nano Lett., 2015, 15(6):3723-3728  doi: 10.1021/acs.nanolett.5b00116

    144. [144]

      Chatterjee S, Pal A J. J. Phys. Chem. C, 2016, 120(3):1428-1437  doi: 10.1021/acs.jpcc.5b11540

    145. [145]

      Zuo C, Ding L. Small, 2015, 11(41):5528-5532  doi: 10.1002/smll.v11.41

    146. [146]

      Zhang H, Cheng J, Lin F, et al. ACS Nano, 2015, 10(1):1503-1511

    147. [147]

      Li Z. Chem. Lett., 2015, 44:1140-1141.

    148. [148]

      Rao H, Ye S, Sun W, et al. Nano Energy, 2016, 27:51-57  doi: 10.1016/j.nanoen.2016.06.044

    149. [149]

      Li Y, Ye S, Sun W, et al. J. Mater. Chem. A, 2015, 3(36):18389-18394  doi: 10.1039/C5TA05989E

    150. [150]

      Liu X, Tsai K W, Zhu Z, et al. Adv. Mater. Interfaces, 2016, 3(13):10600122(9 pages)

    151. [151]

      Jiang Q, Sheng X, Shi B, et al. J. Phys. Chem. C, 2014, 118(45):25878-25883  doi: 10.1021/jp506991x

    152. [152]

      Chiang C H, Wu C G. Nat. Photonnics, 2016, 10(3):196-200  doi: 10.1038/nphoton.2016.3

    153. [153]

      Deng Y, Dong Q, Bi C, et al. Adv. Energy Mater., 2016, 6:1600372(6 pages)  doi: 10.1002/aenm.201600372

    154. [154]

      Xu X, Liu Z, Zuo Z, et al. Nano Lett., 2015, 15(4):2402-2408  doi: 10.1021/nl504701y

    155. [155]

      Cao K, Zuo Z, Cui J, et al. Nano Energy, 2015, 17:171-179  doi: 10.1016/j.nanoen.2015.08.009

    156. [156]

      Zhang L, Liu T, Liu L, et al. J. Mater. Chem. A, 2015, 3(17):9165-9170  doi: 10.1039/C4TA04647A

    157. [157]

      Liu L, Mei A, Liu T, et al. J. Am. Chem. Soc., 2015, 137(5):1790-1793  doi: 10.1021/ja5125594

    158. [158]

      Ku Z, Rong Y, Xu M, et al. Sci. Rep., 2013, 3(11):3132-3137

    159. [159]

      Mei A, Li X, Liu L, et al. Science, 2014, 345(6194):295-298  doi: 10.1126/science.1254763

    160. [160]

      Zhou H, Shi Y, Wang K, et al. J. Phys. Chem. C, 2015, 119(9):4600-4605  doi: 10.1021/jp512101d

    161. [161]

       

    162. [162]

       

    163. [163]

      Niu G, Li W, Meng F, et al. J. Mater. Chem. A, 2014, 2(3):705-710  doi: 10.1039/C3TA13606J

    164. [164]

      Zhao Y, Wei J, Li H, et al. Nat. Commun., 2016, 7:10228-10237  doi: 10.1038/ncomms10228

    165. [165]

      Bella F, Griffini G, Correa-Baena J P, et al. Science, 2016, 354(6309):203-213  doi: 10.1126/science.aah4046

    166. [166]

      Saliba M, Matsui T, Domanski K, et al. Science, 2016, 354(6309):206-209  doi: 10.1126/science.aah5557

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    11. [11]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    12. [12]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    13. [13]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    16. [16]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(268)
  • Abstract views(18025)
  • HTML views(3190)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return