Citation: XIE Ying-Peng, WANG Guo-Sheng, ZHANG En-Lei, ZHANG Xiang. Photocatalytic Hydrogen Evolution from Water Splitting Using Semiconductors:Advance, Challenge and Prospects[J]. Chinese Journal of Inorganic Chemistry, ;2017, 33(2): 177-209. doi: 10.11862/CJIC.2017.030 shu

Photocatalytic Hydrogen Evolution from Water Splitting Using Semiconductors:Advance, Challenge and Prospects

  • Corresponding author: XIE Ying-Peng, yingpeng1985@126.com
  • Received Date: 1 June 2016
    Revised Date: 2 November 2016

Figures(30)

  • Achieving energy conversion from solar to clean hydrogen through water splitting reaction photo-catalyzed by a semiconductor is one of the ultimate ways to solve mankind's energy and environmental crisis. The key to this goal is the development of a wide spectral responsive, and efficient photocatalyst. To date, engineering band gap and crystal facet, constructing semiconductor heterostructures and loading cocatalysts were adopted to expand absorbance range and improve photocatalytic avtivity of semiconductors. In this paper, we have introduced the basic principles and reviewed the research advances of photocatalytic water splitting. The paper is focused on the challenges and bottlenecks in improving the photocatalytic activity of semiconductors, and some coping strategies are also proposed based on relative group's research.
  • 加载中
    1. [1]

      Fujishima A, Honda K. Nature, 1972, 238(5358):37-38  doi: 10.1038/238037a0

    2. [2]

      Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38(1):253-278  doi: 10.1039/B800489G

    3. [3]

      Chen X B, Shen S H, Guo L J, et al. Chem. Rev., 2010, 110(11):6503-6570  doi: 10.1021/cr1001645

    4. [4]

      Kitano M, Hara M. J. Mater. Chem., 2010, 20(4):627-641  doi: 10.1039/B910180B

    5. [5]

      Chen X B, Li C, Gratzel M, et al. Chem. Soc. Rev., 2012, 41(23):7909-7937  doi: 10.1039/c2cs35230c

    6. [6]

      Yerga R M N, Galvan M C A, del Valle F, et al. Chemsus-chem, 2009, 2(6):471-485  doi: 10.1002/cssc.v2:6

    7. [7]

      Li X, Yu J G, Low J X, et al. J. Mater. Chem. A, 2015, 3(6): 2485-2534  doi: 10.1039/C4TA04461D

    8. [8]

      Osterloh F E. Chem. Mater., 2008, 20(1):35-54  doi: 10.1021/cm7024203

    9. [9]

      Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem. Int. Ed., 2011, 50(32):7238-7266  doi: 10.1002/anie.v50.32

    10. [10]

      Liu G, Yang H G, Pan J, et al. Chem. Rev., 2014, 114(19): 9559-9612  doi: 10.1021/cr400621z

    11. [11]

      Liu G, Yu J C, Lu G Q, et al. Chem. Commun., 2011, 47(24):6763-6783  doi: 10.1039/c1cc10665a

    12. [12]

      Zhang K, Guo L J. Catal. Sci. Technol., 2013, 3(7):1672-1690  doi: 10.1039/c3cy00018d

    13. [13]

      Hisatomi T, Kubota J, Domen K. Chem. Soc. Rev., 2014, 43(22):7520-7535  doi: 10.1039/C3CS60378D

    14. [14]

      Ekambaram S. J. Alloys Compd., 2008, 448(1/2):238-245

    15. [15]

      Liu G, Wang L Z, Yang H G, et al. J. Mater. Chem., 2010, 20(5):831-843  doi: 10.1039/B909930A

    16. [16]

      Ni M, Leung M K H, Leung D Y C, et al. Renewable Sustainable Energy Rev., 2007, 11(3):401-425  doi: 10.1016/j.rser.2005.01.009

    17. [17]

      Sayama K, Arakawa H. J. Phys. Chem., 1993, 97(3):531-533  doi: 10.1021/j100105a001

    18. [18]

      Chen X Y, Yu T, Fan X X, et al. Appl. Surf. Sci., 2007, 253(20):8500-8506  doi: 10.1016/j.apsusc.2007.04.035

    19. [19]

      Takahara Y, Kondo J N, Takata T, et al. Chem. Mater., 2001, 13(4):1194-1199  doi: 10.1021/cm000572i

    20. [20]

      Janaky C, Rajeshwar K, de Tacconi N R, et al. Catal. Today, 2013, 199:53-64  doi: 10.1016/j.cattod.2012.07.020

    21. [21]

      Domen K, Kudo A, Onishi T. J. Catal., 1986, 102(1):92-98  doi: 10.1016/0021-9517(86)90143-0

    22. [22]

      Ogura S, Kohno M, Sato K, et al. Appl. Surf. Sci., 1997, 121: 521-524

    23. [23]

      Inoue Y, Kubokawa T, Sato K. J. Phys. Chem., 1991, 95(10):4059-4063  doi: 10.1021/j100163a032

    24. [24]

      Inoue Y, Asai Y, Sato K. J. Chem. Soc. Faraday Trans., 1994, 90(5):797-802  doi: 10.1039/FT9949000797

    25. [25]

      Takata T, Furumi Y, Shinohara K, et al. Chem. Mater., 1997, 9(5):1063-1064  doi: 10.1021/cm960612b

    26. [26]

      Ogura S, Sato K, Inoue Y. Phys. Chem. Chem. Phys., 2000, 2(10):2449-2454  doi: 10.1039/b000187m

    27. [27]

      Kudo A, Sayama K, Tanaka A, et al. J. Catal., 1989, 120(2): 337-352  doi: 10.1016/0021-9517(89)90274-1

    28. [28]

      Kudo A, Kato H, Nakagawa S. J. Phys. Chem. B, 2000, 104(3):571-575  doi: 10.1021/jp9919056

    29. [29]

      Miseki Y, Kato H, Kudo A. Chem. Lett., 2005, 34(1):54-55  doi: 10.1246/cl.2005.54

    30. [30]

      Miseki Y, Kato H, Kudo A. Chem. Lett., 2006, 35(9):1052-1053  doi: 10.1246/cl.2006.1052

    31. [31]

      Kato H, Kudo A. Catal. Lett., 1999, 58(2/3):153-155  doi: 10.1023/A:1019082001809

    32. [32]

      Ishihara T, Nishiguchi H, Fukamachi K, et al. J. Phys. Chem. B, 1999, 103(1):1-3  doi: 10.1021/jp983590k

    33. [33]

      Kato H, Kudo A. Chem. Phys. Lett., 1998, 295(5/6):487-492

    34. [34]

      Machida M, Mitsuyama T, Ikeue K, et al. J. Phys. Chem. B, 2005, 109(16):7801-7806  doi: 10.1021/jp044833d

    35. [35]

      Shimizu K, Tsuji Y, Kawakami M, et al. Chem. Lett., 2002, 31(11):1158-1159  doi: 10.1246/cl.2002.1158

    36. [36]

      Kurihara T, Okutomi H, Miseki Y, et al. Chem. Lett., 2006, 35(3):274-275  doi: 10.1246/cl.2006.274

    37. [37]

      Otsuka H, Kim K Y, Kouzu A, et al. Chem. Lett., 2005, 34(6):822-823  doi: 10.1246/cl.2005.822

    38. [38]

      Kim D W, Cho I S, Lee S, et al. J. Am. Ceram. Soc., 2010, 93(11):3867-3872  doi: 10.1111/jace.2010.93.issue-11

    39. [39]

      Cheng H F, Huang B B, Liu Y Y, et al. Chem. Commun., 2012, 48(78):9729-9731  doi: 10.1039/c2cc35289c

    40. [40]

      Yourey J E, Bartlett B M. J. Mater. Chem., 2011, 21(21): 7651-7660  doi: 10.1039/c1jm11259g

    41. [41]

      Cho I S, Kwak C H, Kim D W, et al. J. Phys. Chem. C, 2009, 113(24):10647-10653  doi: 10.1021/jp901557z

    42. [42]

      Huang G L, Zhang C, Zhu Y F. J. Alloys Compd., 2007, 432(1/2):269-276

    43. [43]

      Ahmad M I, Mohanty G, Cambrea L R, et al. J. Cryst. Growth, 2012, 343(1):115-121  doi: 10.1016/j.jcrysgro.2011.12.081

    44. [44]

      Lee S, Teshima K, Fujisawa M, et al. Phys. Chem. Chem. Phys., 2009, 11(19):3628-3633  doi: 10.1039/b821209k

    45. [45]

      Konta R, Kato H, Kobayashi H, et al. Phys. Chem. Chem. Phys., 2003, 5(14):3061-3065  doi: 10.1039/b300179b

    46. [46]

      Tokunaga S, Kato H, Kudo A. Chem. Mater., 2001, 13(12): 4624-4628  doi: 10.1021/cm0103390

    47. [47]

      Hu Y W, Zhang W, Pan W. Mater. Res. Bull., 2013, 48(2): 668-671  doi: 10.1016/j.materresbull.2012.11.029

    48. [48]

      Girija K, Thirumalairajan S, Patra A K, et al. Curr. Appl. Phys., 2013, 13(4):652-658  doi: 10.1016/j.cap.2012.11.004

    49. [49]

      Apte S K, Garaje S N, Valant M, et al. Green Chem., 2012, 14(5):1455-1462  doi: 10.1039/c2gc16416g

    50. [50]

      Karunakaran C, Raadha S S, Gomathisankar P. J. Alloys Compd., 2013, 549:269-275  doi: 10.1016/j.jallcom.2012.09.035

    51. [51]

      Sato J, Saito N, Nishiyama H, et al. J. Phys. Chem. B, 2001, 105(26):6061-6063  doi: 10.1021/jp010794j

    52. [52]

      Sato J, Saito N, Nishiyama H, et al. Chem. Lett., 2001, 30(9): 868-869  doi: 10.1246/cl.2001.868

    53. [53]

      Sato J, Kobayashi H, Saito N, et al. J. Photochem. Photobiol. A, 2003, 158(2/3):139-144

    54. [54]

      Sato J, Kobayashi H, Inoue Y. J. Phys. Chem. B, 2003, 107(31):7970-7975  doi: 10.1021/jp030021q

    55. [55]

      Ikarashi K, Sato J, Kobayashi H, et al. J. Phys. Chem. B, 2002, 106(35):9048-9053  doi: 10.1021/jp020539e

    56. [56]

      Sato J, Kobayashi H, Ikarashi K, et al. J. Phys. Chem. B, 2004, 108(14):4369-4375  doi: 10.1021/jp0373189

    57. [57]

      Liu R M, Yin J Z, Du W, et al. Eur. J. Inorg. Chem., 2013, 2013(8):1358-1362  doi: 10.1002/ejic.201200975

    58. [58]

      Li B X, Liu T X, Hu L Y, et al. J. Phys. Chem. Solids, 2013, 74(4):635-640  doi: 10.1016/j.jpcs.2012.12.020

    59. [59]

      Zhu J X, Yin Z Y, Yang D, et al. Energy Environ. Sci., 2013, 6(3):987-993  doi: 10.1039/c2ee24148j

    60. [60]

      Abdulkarem A M, Elssfah E M, Yan N N, et al. J. Phys. Chem. Solids, 2013, 74(4):647-652  doi: 10.1016/j.jpcs.2012.12.027

    61. [61]

      Zhang J Y, Wang Y H, Zhang J, et al. ACS Appl. Mater. Interfaces, 2013, 5(3):1031-1037  doi: 10.1021/am302726y

    62. [62]

      Lei Z B, You W S, Liu M Y, et al. Chem. Commun., 2003(17):2142-2143  doi: 10.1039/b306813g

    63. [63]

      Tsuji I, Kato H, Kobayashi H, et al. J. Am. Chem. Soc., 2004, 126(41):13406-13413  doi: 10.1021/ja048296m

    64. [64]

      Jang J S, Borse P H, Lee J S, et al. J. Chem. Phys., 2008, 128(15):154717  doi: 10.1063/1.2900984

    65. [65]

      Tsuji I, Kato H, Kudo A. Angew. Chem. Int. Ed., 2005, 44(23):3565-3568  doi: 10.1002/(ISSN)1521-3773

    66. [66]

      Sato J, Saito N, Yamada Y, et al. J. Am. Chem. Soc., 2005, 127(12):4150-4151  doi: 10.1021/ja042973v

    67. [67]

      Ma S S K, Hisatomi T, Maeda K, et al. J. Am. Chem. Soc., 2012, 134(49):19993-19996  doi: 10.1021/ja3095747

    68. [68]

      Hara M, Hitoki G, Takata T, et al. Catal. Today, 2003, 78(1/2/3/4):555-560

    69. [69]

      Ishikawa A, Takata T, Kondo J N, et al. J. Am. Chem. Soc., 2002, 124(45):13547-13553  doi: 10.1021/ja0269643

    70. [70]

      Wang X C, Maeda K, Thomas A, et al. Nat. Mater., 2009, 8(1):76-80  doi: 10.1038/nmat2317

    71. [71]

      Zhang G G, Lan Z A, Lin L H, et al. Chem. Sci., 2016, 7(5): 3062-3066  doi: 10.1039/C5SC04572J

    72. [72]

      Liu J, Liu Y, Liu N Y, et al. Science, 2015, 347(6225):970-974  doi: 10.1126/science.aaa3145

    73. [73]

      Guo F, Chen J L, Zhang M W, et al. J. Mater. Chem. A, 2016, 4(28):10806-10809  doi: 10.1039/C6TA03424A

    74. [74]

      Martin D J, Reardon P J T, Moniz S J A, et al. J. Am. Chem. Soc., 2014, 136(36):12568-12571  doi: 10.1021/ja506386e

    75. [75]

      Zhao G X, Huang X B, Fina F, et al. Catal. Sci. Technol., 2015, 5(6):3416-3422  doi: 10.1039/C5CY00379B

    76. [76]

      Zhao Z W, Sun Y J, Dong F. Nanoscale, 2015, 7(1):15-37  doi: 10.1039/C4NR03008G

    77. [77]

      Zhang J S, Wang B, Wang X C. Prog. Chem., 2014, 26(1):19-29

    78. [78]

      Zheng Y, Lin L H, Wang B, et al. Angew. Chem. Int. Ed., 2015, 54(44):12868-12884  doi: 10.1002/anie.v54.44

    79. [79]

      Zhang J S, Chen Y, Wang X C. Energy Environ. Sci., 2015, 8(11):3092-3108  doi: 10.1039/C5EE01895A

    80. [80]

      Zheng Y, Lin L H, Ye X J, et al. Angew. Chem. Int. Ed., 2014, 53(44):11926-11930  doi: 10.1002/anie.201407319

    81. [81]

      Zhang J S, Zhang M W, Lin L H, et al. Angew. Chem. Int. Ed., 2015, 54(21):6297-6301  doi: 10.1002/anie.201501001

    82. [82]

      Niu P, Zhang L L, Liu G, et al. Adv. Funct. Mater., 2012, 22(22):4763-4770  doi: 10.1002/adfm.v22.22

    83. [83]

      Liu G, Niu P, Sun C H, et al. J. Am. Chem. Soc., 2010, 132(33):11642-11648  doi: 10.1021/ja103798k

    84. [84]

      Lin Z Z, Wang X C. Angew. Chem. Int. Ed., 2013, 52(6): 1735-1738  doi: 10.1002/anie.v52.6

    85. [85]

      Zhang G G, Zhang M W, Ye X X, et al. Adv. Mater., 2014, 26(5):805-809  doi: 10.1002/adma.201303611

    86. [86]

      Zhang J S, Chen X F, Takanabe K, et al. Angew. Chem. Int. Ed., 2010, 49(2):441-444  doi: 10.1002/anie.200903886

    87. [87]

      Zhang J S, Zhang G G, Chen X F, et al. Angew. Chem. Int. Ed., 2012, 51(13):3183-3187  doi: 10.1002/anie.v51.13

    88. [88]

      Zhang J S, Zhang M W, Lin S, et al. J. Catal., 2014, 310:24-30  doi: 10.1016/j.jcat.2013.01.008

    89. [89]

      ZHENG Hua-Rong, ZHANG Jin-Shui, WANG Xin-Chen, et al. Acta Phys-Chim. Sin., 2012, 28(10):2336-2342  doi: 10.3866/PKU.WHXB201209104

    90. [90]

      Sprick R S, Jiang J X, Bonillo B, et al. J. Am. Chem. Soc., 2015, 137(9):3265-3270  doi: 10.1021/ja511552k

    91. [91]

      Yang C, Ma B C, Zhang L Z, et al. Angew. Chem. Int. Ed., 2016, 55(32):9202-9206  doi: 10.1002/anie.201603532

    92. [92]

      Sprick R S, Bonillo B, Clowes R, et al. Angew. Chem. Int. Ed., 2016, 55(5):1824-1828

    93. [93]

      Schwab M G, Hamburger M, Feng X L, et al. Chem. Commun., 2010, 46(47):8932-8934  doi: 10.1039/c0cc04057f

    94. [94]

      Shao M W, Cheng L, Zhang X H, et al. J. Am. Chem. Soc., 2009, 131(49):17738-17739  doi: 10.1021/ja908085c

    95. [95]

      Wang F, Ng W K H, Yu J C, et al. Appl. Catal. B:Environ., 2012, 111:409-414

    96. [96]

      Liu G, Yin L C, Niu P, et al. Angew. Chem. Int. Ed., 2013, 52(24):6242-6245  doi: 10.1002/anie.201302238

    97. [97]

      Chiou Y D, Hsu Y J. Appl. Catal. B:Environ., 2011, 105(1/2):211-219

    98. [98]

      Liu G, Niu P, Yin L C, et al. J. Am. Chem. Soc., 2012, 134(22):9070-9073  doi: 10.1021/ja302897b

    99. [99]

      Takata T, Tanaka A, Hara M, et al. Catal. Today, 1998, 44(1/2/3/4):17-26

    100. [100]

      Ikeda S, Hara M, Kondo J N, et al. J. Mater. Res., 1998, 13(4):852-855  doi: 10.1557/JMR.1998.0113

    101. [101]

      Kato H, Asakura K, Kudo A. J. Am. Chem. Soc., 2003, 125(10):3082-3089  doi: 10.1021/ja027751g

    102. [102]

      Soldat J, Marschall R, Wark M. Chem. Sci., 2014, 5(10): 3746-3752  doi: 10.1039/C4SC01127A

    103. [103]

      Liu H, Yuan J, Jiang Z, et al. J. Mater. Chem., 2011, 21(41):16535-16543  doi: 10.1039/c1jm11809a

    104. [104]

      Mu L C, Zhao Y, Li A L, et al. Energy Environ. Sci., 2016, 9(7):2463-2469  doi: 10.1039/C6EE00526H

    105. [105]

      Maeda K, Lu D L, Domen K. Chem. Eur. J., 2013, 19(16): 4986-4891  doi: 10.1002/chem.201300158

    106. [106]

      Pan C S, Takata T, Nakabayashi M, et al. Angew. Chem. Int. Ed., 2015, 54(10):2955-2959  doi: 10.1002/anie.201410961

    107. [107]

      Zou Z G, Ye J H, Sayama K, et al. Nature, 2001, 414(6864): 625-627  doi: 10.1038/414625a

    108. [108]

      Xu J S, Pan C S, Takata T, et al. Chem. Commun., 2015, 51(33):7191-7194  doi: 10.1039/C5CC01728A

    109. [109]

      Zhang P, Zhang J J, Gong J L. Chem. Soc. Rev., 2014, 43(13):4395-4422  doi: 10.1039/C3CS60438A

    110. [110]

      Hara M, Kondo T, Komoda M, et al. Chem. Commun., 1998(3):357-358  doi: 10.1039/a707440i

    111. [111]

      Maeda K, Teramura K, Lu D L, et al. Nature, 2006, 440(7082):295  doi: 10.1038/440295a

    112. [112]

      Maeda K, Teramura K, Domen K. J. Catal., 2008, 254(2): 198-204  doi: 10.1016/j.jcat.2007.12.009

    113. [113]

      Li J, Liu B D, Yang W J, et al. Nanoscale, 2016, 8(6):3694-3703  doi: 10.1039/C5NR08663A

    114. [114]

      Takanabe K, Uzawa T, Wang X C, et al. Dalton Trans., 2009(45):10055-10062  doi: 10.1039/b910318j

    115. [115]

      Maeda K, Saito N, Inoue Y, et al. Chem. Mater., 2007, 19(16):4092-4097  doi: 10.1021/cm0709828

    116. [116]

      Ni L, Tanabe M, Irie H. et al. Chem. Commun., 2013, 49(86):10094-10096  doi: 10.1039/c3cc45222k

    117. [117]

      Zhang N, Shi J W, Mao S S. Chem. Commun., 2014, 50(16): 2002-2004  doi: 10.1039/c3cc48026g

    118. [118]

      Maeda K. Catal. Sci. Technol., 2014, 4(7):1949-1953  doi: 10.1039/C4CY00251B

    119. [119]

      Li R G, Weng Y X, Zhou X, et al. Energy Environ. Sci., 2015, 8(8):2377-2382  doi: 10.1039/C5EE01398D

    120. [120]

      Maeda K, Lu D L, Teramura K, et al. Energy Environ. Sci., 2010, 3(4):471-478  doi: 10.1039/B915064A

    121. [121]

      Zhang K, Kim W, Ma M, et al. J. Mater. Chem. A, 2015, 3(9):4803-4810  doi: 10.1039/C4TA05571C

    122. [122]

      Kudo A. MRS Bull., 2011, 36(1):32-38  doi: 10.1557/mrs.2010.3

    123. [123]

      Maeda K, Domen K. J. Phys. Chem. Lett., 2010, 1(18):2655-2661  doi: 10.1021/jz1007966

    124. [124]

      Maeda K. ACS Catal., 2013, 3(7):1486-1503  doi: 10.1021/cs4002089

    125. [125]

      Maeda K, Higashi M, Lu D L, et al. J. Am. Chem. Soc., 2010, 132(16):5858-5868  doi: 10.1021/ja1009025

    126. [126]

      Chen S, Qi Y, Hisatomi T, et al. Angew. Chem. Int. Ed., 2015, 54(29):8498-8501  doi: 10.1002/anie.201502686

    127. [127]

      Sasaki Y, Iwase A, Kato H, et al. J. Catal., 2008, 259(1): 133-137  doi: 10.1016/j.jcat.2008.07.017

    128. [128]

      Kato H, Sasaki Y, Iwase A, et al. Bull. Chem. Soc. Jpn., 2007, 80(12):2457-2464  doi: 10.1246/bcsj.80.2457

    129. [129]

      Sasaki Y, Nemoto H, Saito K, et al. J. Phys. Chem. C, 2009, 113(40):17536-17542  doi: 10.1021/jp907128k

    130. [130]

      Yang L L, Zhou H, Fan T X, et al. Phys. Chem. Chem. Phys., 2014, 16(15):6810-6826  doi: 10.1039/c4cp00246f

    131. [131]

      Walsh A, Yan Y, Huda M N, et al. Chem. Mater., 2009, 21(3):547-551  doi: 10.1021/cm802894z

    132. [132]

      Wang D F, Tang J W, Zou Z G, et al. Chem. Mater., 2005, 17(20):5177-5182  doi: 10.1021/cm051016x

    133. [133]

      Yi Z G, Ye J H, Kikugawa N, et al. Nat. Mater., 2010, 9(7): 559-564  doi: 10.1038/nmat2780

    134. [134]

      Tang J W, Zou Z G, Ye J H. Catal. Lett., 2004, 92(1/2):53-56  doi: 10.1023/B:CATL.0000011086.20412.aa

    135. [135]

      Xie Y P, Liu G, Yin L C, et al. J. Mater. Chem., 2012, 22(14):6746-6751  doi: 10.1039/c2jm16178h

    136. [136]

      Wang D E, Jiang H F, Zong X, et al. Chem. Eur. J., 2011, 17(4):1275-1282  doi: 10.1002/chem.v17.4

    137. [137]

      Zhang G G, Huang C J, Wang X C. Small, 2015, 11(9/10): 1215-1221

    138. [138]

      Zhang G G, Zang S H, Lin L H, et al. ACS Appl. Mater. Interfaces, 2016, 8(3):2287-2296  doi: 10.1021/acsami.5b11167

    139. [139]

      Zhang G G, Zang S H, Lan Z A, et al. J. Mater. Chem. A, 2015, 3(35):17946-17950  doi: 10.1039/C5TA04767F

    140. [140]

      Zhang G G, Zang S H, Wang X C. ACS Catal., 2015, 5(2): 941-947  doi: 10.1021/cs502002u

    141. [141]

      Pan H, Zhu S, Lou X, et al. RSC Adv., 2015, 5(9):6543-6552  doi: 10.1039/C4RA09546D

    142. [142]

      Zhang H, Lü X J, Li Y M, et al. ACS Nano, 2010, 4(1):380-386  doi: 10.1021/nn901221k

    143. [143]

      Kim I Y, Lee J M, Kim T W, et al. Small, 2012, 8(7):1038-1048  doi: 10.1002/smll.201101703

    144. [144]

      Lee J S, You K H, Park C B. Adv. Mater., 2012, 24(8):1084-1088  doi: 10.1002/adma.201104110

    145. [145]

      Guo J J, Li Y, Zhu S M, et al. RSC Adv., 2012, 2(4):1356-1363  doi: 10.1039/C1RA00621E

    146. [146]

      Sun Z H, Guo J J, Zhu S M, et al. Nanoscale, 2014, 6(4): 2186-2193  doi: 10.1039/C3NR05249D

    147. [147]

      Meng F K, Li J T, Cushing S K, et al. ACS Catal., 2013, 3(4):746-751  doi: 10.1021/cs300740e

    148. [148]

      Sun Z H, Guo J J, Zhu S M, et al. RSC Adv., 2014, 4(53): 27963-27970  doi: 10.1039/C4RA03533J

    149. [149]

      Huang H, Yue Z K, Li G, et al. J. Mater. Chem. A, 2013, 1(47):15110-15116  doi: 10.1039/c3ta13433d

    150. [150]

      Bai S, Shen X P, Lü H W, et al. J. Colloid Interface Sci., 2013, 405:1-9  doi: 10.1016/j.jcis.2013.05.023

    151. [151]

      Liu L, Liu J C, Sun D D. Catal. Sci. Technol., 2012, 2(12): 2525-2532  doi: 10.1039/c2cy20483e

    152. [152]

      Borgarello E, Kiwi J, Gratzel M, et al. J. Am. Chem. Soc., 1982, 104(11):2996-3002  doi: 10.1021/ja00375a010

    153. [153]

      Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293(5528):269-271  doi: 10.1126/science.1061051

    154. [154]

      Irie H, Watanabe Y, Hashimoto K. J. Phys. Chem. B, 2003, 107(23):5483-5486  doi: 10.1021/jp030133h

    155. [155]

      Ihara T, Miyoshi M, Iriyama Y, et al. Appl. Catal. B: Environ., 2003, 42(4):403-409  doi: 10.1016/S0926-3373(02)00269-2

    156. [156]

      Liu G, Pan J, Yin L C, et al. Adv. Funct. Mater., 2012, 22(15):3233-3238  doi: 10.1002/adfm.v22.15

    157. [157]

      Liu G, Wang L Z, Sun C H, et al. Chem. Mater., 2009, 21(7):1266-1274  doi: 10.1021/cm802986r

    158. [158]

      Liu G, Yin L C, Wang J Q, et al. Energy Environ. Sci, 2012, 5(11):9603-9610  doi: 10.1039/c2ee22930g

    159. [159]

      Pan X Y, Yang M Q, Fu X Z, et al. Nanoscale, 2013, 5(9): 3601-3614  doi: 10.1039/c3nr00476g

    160. [160]

      Lü Y H, Yao W Q, Ma X G, et al. Catal. Sci. Technol., 2013, 3(12):3136-3146  doi: 10.1039/c3cy00369h

    161. [161]

      Niu P, Liu G, Cheng H M. J. Phys. Chem. C, 2012, 116(20):11013-11018  doi: 10.1021/jp301026y

    162. [162]

      Niu P, Yin L C, Yang Y Q, et al. Adv. Mater., 2014, 26(47): 8046-8052  doi: 10.1002/adma.v26.47

    163. [163]

      Li R G, Wang X L, Jin S Q, et al. Sci. Rep., 2015, 5:13475  doi: 10.1038/srep13475

    164. [164]

      Chen X B, Liu L, Yu P Y, et al. Science, 2011, 331(6018): 746-750  doi: 10.1126/science.1200448

    165. [165]

      Kang Y Y, Yang Y Q, Yin L C, et al. Adv. Mater., 2015, 27(31):4572-4577  doi: 10.1002/adma.v27.31

    166. [166]

      Wang Z Q, Wen B, Hao Q Q, et al. J. Am. Chem. Soc., 2015, 137(28):9146-9152  doi: 10.1021/jacs.5b04483

    167. [167]

      Kakuta N, Park K H, Finlayson M F, et al. J. Phys. Chem., 1985, 89(5):732-734  doi: 10.1021/j100251a002

    168. [168]

      Xing C J, Zhang Y J, Yan W, et al. Int. J. Hydrogen Energy, 2006, 31(14):2018-2024  doi: 10.1016/j.ijhydene.2006.02.003

    169. [169]

      Tsuji I, Kato H, Kobayashi H, et al. J. Phys. Chem. B, 2005, 109(15):7323-7329  doi: 10.1021/jp044722e

    170. [170]

      Torimoto T, Adachi T, Okazaki K, et al. J. Am. Chem. Soc., 2007, 129(41):12388-12389  doi: 10.1021/ja0750470

    171. [171]

      Tsuji I, Kato H, Kudo A. Chem. Mater., 2006, 18(7):1969-1975  doi: 10.1021/cm0527017

    172. [172]

      Liu H, Yuan J, Shangguan W F, et al. J. Phys. Chem. C, 2008, 112(23):8521-8523  doi: 10.1021/jp802537u

    173. [173]

      Wang Q Z, Liu H, Jiang L, et al. Catal. Lett., 2009, 131(1/2):160-163

    174. [174]

      Maeda K, Takata T, Hara M, et al. J. Am. Chem. Soc., 2005, 127(23):8286-8287  doi: 10.1021/ja0518777

    175. [175]

      Lee Y, Terashima H, Shimodaira Y, et al. J. Phys. Chem. C, 2007, 111(2):1042-1048  doi: 10.1021/jp0656532

    176. [176]

      Maeda K, Domen K. Chem. Mater., 2010, 22(3):612-623  doi: 10.1021/cm901917a

    177. [177]

      Yoshida M, Hirai T, Maeda K, et al. J. Phys. Chem. C, 2010, 114(36):15510-15515  doi: 10.1021/jp100106y

    178. [178]

      Liu G, Yang H G, Wang X W, et al. J. Am. Chem. Soc., 2009, 131(36):12868-12869  doi: 10.1021/ja903463q

    179. [179]

      Liu G, Sun C H, Yang H G, et al. Chem. Commun., 2010, 46(5):755-757  doi: 10.1039/B919895D

    180. [180]

      Pan J, Liu G, Lu G M, et al. Angew. Chem. Int. Ed., 2011, 50(9):2133-2137  doi: 10.1002/anie.v50.9

    181. [181]

      Pan J, Wu X, Wang L Z, et al. Chem. Commun., 2011, 47(29):8361-8363  doi: 10.1039/c1cc13034j

    182. [182]

      Jiao W, Xie Y P, Chen R Z, et al. Chem. Commun., 2013, 49(100):11770-11772  doi: 10.1039/c3cc46527f

    183. [183]

      Bi Y, Ouyang S, Umezawa N, et al. J. Am. Chem. Soc., 2011, 133(17):6490-6492  doi: 10.1021/ja2002132

    184. [184]

      Ohno T, Sarukawa K, Matsumura M. New J. Chem., 2002, 26(9):1167-1170  doi: 10.1039/b202140d

    185. [185]

      Li R G, Zhang F X, Wang D G, et al. Nat. Commun., 2013, 4: 1432  doi: 10.1038/ncomms2401

    186. [186]

      Zhu J, Fan F T, Chen R T, et al. Angew. Chem. Int. Ed., 2015, 54(31):9111-9114  doi: 10.1002/anie.201504135

    187. [187]

      Yang H G, Sun C H, Qiao S Z, et al. Nature, 2008, 453(7195):638-641  doi: 10.1038/nature06964

    188. [188]

      Song H S, Zhang W J, Cheng C, et al. Cryst. Growth. Des., 2011, 11(1):147-153  doi: 10.1021/cg101062e

    189. [189]

      Kim H N, Kim T W, Kim I Y, et al. Adv. Funct. Mater., 2011, 21(16):3111-3118  doi: 10.1002/adfm.201100453

    190. [190]

      Lin C J, Chen S Y, Liou Y H. Electrochem. Commun., 2010, 12(11):1513-1516  doi: 10.1016/j.elecom.2010.08.021

    191. [191]

      Sun Y H, Zhao Q, Gao J Y, et al. Nanoscale, 2011, 3(10): 4418-4426  doi: 10.1039/c1nr10922g

    192. [192]

      Wei S Q, Chen Y Y, Ma Y Y, et al. J. Mol. Catal. A:Chem., 2010, 331(1/2):112-116

    193. [193]

      Cui Y F, Wang C, Liu G, et al. Mater. Lett., 2011, 65(14): 2284-2286  doi: 10.1016/j.matlet.2011.04.041

    194. [194]

      Yan W, Fan H Q, Yang C. Mater. Lett., 2011, 65(11):1595-1597  doi: 10.1016/j.matlet.2011.03.026

    195. [195]

      Agrawal M, Gupta S, Pich A, et al. Chem. Mater., 2009, 21(21):5343-5348  doi: 10.1021/cm9028098

    196. [196]

      Lin D D, Wu H, Zhang R, et al. J. Am. Ceram. Soc., 2010, 93(10):3384-3389  doi: 10.1111/jace.2010.93.issue-10

    197. [197]

      Cun W, Wang X M, Xu B Q, et al. J. Photochem. Photobiol. A, 2004, 168(1/2):47-52

    198. [198]

      Lü K Z, Li J, Qing X X, et al. J. Hazard. Mater., 2011, 189(1/2):329-335

    199. [199]

      Yan H J, Zhang X J, Zhou SQ, et al. J. Alloys Compd., 2011, 509(24):L232-L235  doi: 10.1016/j.jallcom.2011.03.181

    200. [200]

      Kim H I, Kim J, Kim W, et al. J. Phys. Chem. C, 2011, 115(19):9797-9805  doi: 10.1021/jp1122823

    201. [201]

      Wang Z Y, Huang B B, Dai Y, et al. J. Phys. Chem. C, 2009, 113(11):4612-4617  doi: 10.1021/jp8107683

    202. [202]

      Chen S F, Zhao W, Liu W, et al. Chem. Eng. J., 2009, 155(1/2):466-473

    203. [203]

      Chen S F, Zhao W, Liu W, et al. J. Sol-Gel Sci. Technol., 2009, 50(3):387-396  doi: 10.1007/s10971-009-1908-3

    204. [204]

      Chen S F, Zhao W, Liu W, et al. Appl. Surf. Sci., 2008, 255(5):2478-2484  doi: 10.1016/j.apsusc.2008.07.115

    205. [205]

      Wang X W, Liu G, Chen Z G, et al. Chem. Commun., 2009(23):3452-3454  doi: 10.1039/b904668b

    206. [206]

      Miyauchi M, Nukui Y, Atarashi D, et al. ACS Appl. Mater. Interfaces, 2013, 5(19):9770-9776  doi: 10.1021/am402929d

    207. [207]

      Zhang L J, Li S, Liu B K, et al. ACS Catal., 2014, 4(10): 3724-3729  doi: 10.1021/cs500794j

    208. [208]

      Wang J C, Yao H C, Fan Z Y, et al. ACS Appl. Mater. Interfaces, 2016, 8(6):3765-3775  doi: 10.1021/acsami.5b09901

    209. [209]

      Tada H, Mitsui T, Kiyonaga T, et al. Nat. Mater., 2006, 5(10):782-786  doi: 10.1038/nmat1734

    210. [210]

      Yu Z B, Xie Y P, Liu G, et al. J. Mater. Chem. A, 2013, 1(8):2773-2776  doi: 10.1039/c3ta01476b

    211. [211]

      Yun H J, Lee H, Kim N D, et al. ACS Nano, 2011, 5(5): 4084-4090  doi: 10.1021/nn2006738

    212. [212]

      Kobayashi R, Tanigawa S, Takashima T, et al. J. Phys. Chem. C, 2014, 118(39):22450-22456  doi: 10.1021/jp5069973

    213. [213]

      Wang Q, Hisatomi T, Ma S S K, et al. Chem. Mater., 2014, 26(14):4144-4150  doi: 10.1021/cm5011983

    214. [214]

      Iwase A, Ng Y H, Ishiguro Y, et al. J. Am. Chem. Soc., 2011, 133(29):11054-11057  doi: 10.1021/ja203296z

    215. [215]

      Jo W K, Natarajan T S. ACS Appl. Mater. Interfaces, 2015, 7(31):17138-17154  doi: 10.1021/acsami.5b03935

    216. [216]

      Xian J J, Li D Z, Chen J, et al. ACS Appl. Mater. Interfaces, 2014, 6(15):13157-13166  doi: 10.1021/am5029999

    217. [217]

      Wang X W, Yin L C, Liu G. Chem. Commun., 2014, 50(26): 3460-3463  doi: 10.1039/c4cc00044g

    218. [218]

      Wang Q, Hisatomi T, Jia Q, et al. Nat. Mater., 2016, 15: 611-615  doi: 10.1038/nmat4589

    219. [219]

      Huang J, Mulfort K L, Du P W, et al. J. Am. Chem. Soc., 2012, 134(40):16472-16475  doi: 10.1021/ja3062584

    220. [220]

      Zhu H M, Song N H, Lü H J, et al. J. Am. Chem. Soc., 2012, 134(28):11701-11708  doi: 10.1021/ja303698e

    221. [221]

      Xie Y P, Yu Z B, Liu G, et al. Energy Environ. Sci., 2014, 7(6):1895-1901  doi: 10.1039/c3ee43750g

    222. [222]

      Zhang J, Xu Q, Feng Z, et al. Angew. Chem. Int. Ed., 2008, 47(9):1766-1769  doi: 10.1002/(ISSN)1521-3773

    223. [223]

      Wang X, Xu Q, Li M R, et al. Angew. Chem. Int. Ed., 2012, 51(52):13089-13092  doi: 10.1002/anie.201207554

    224. [224]

      Wang D E, Li R G, Zhu J, et al. J. Phys. Chem. C, 2012, 116(8):5082-5089  doi: 10.1021/jp210584b

    225. [225]

      Lee J S, Choi W Y. J. Phys. Chem. B, 2005, 109(15):7399-7406  doi: 10.1021/jp044425+

    226. [226]

      Zhang F X, Maeda K, Takata T, et al. Catal. Today, 2012, 185(1):253-258  doi: 10.1016/j.cattod.2011.09.025

    227. [227]

      Inoue Y. Energy Environ. Sci., 2009, 2(4):364-386  doi: 10.1039/b816677n

    228. [228]

      Domen K, Kudo A, Onishi T, et al. J. Phys. Chem., 1986, 90(2):292-295  doi: 10.1021/j100274a018

    229. [229]

      Lalitha K, Sadanandam G, Kumari V D, et al. J. Phys. Chem. C, 2010, 114(50):22181-22189  doi: 10.1021/jp107405u

    230. [230]

      Sayama K, Hayashi H, Arai T, et al. Appl. Catal. B, 2010, 94(1/2):150-157

    231. [231]

      Arai T, Horiguchi M, Yanagida M, et al. J. Phys. Chem. C, 2009, 113(16):6602-6609  doi: 10.1021/jp8111342

    232. [232]

      Maeda K, Xiong A K, Yoshinaga T, et al. Angew. Chem. Int. Ed., 2010, 49(24):4096-4099  doi: 10.1002/anie.201001259

    233. [233]

      Zong X, Yan H J, Wu G P, et al. J. Am. Chem. Soc., 2008, 130(23):7176-7177  doi: 10.1021/ja8007825

    234. [234]

      Zong X, Han J F, Ma G J, et al. J. Phys. Chem. C, 2011, 115(24):12202-12208  doi: 10.1021/jp2006777

    235. [235]

      Zhang W, Wang Y B, Wang Z, et al. Chem. Commun., 2010, 46(40):7631-7633  doi: 10.1039/c0cc01562h

    236. [236]

      Tabata M, Maeda K, Ishihara T, et al. J. Phys. Chem. C, 2010, 114(25):11215-11220  doi: 10.1021/jp103158f

    237. [237]

      Zhang F X, Maeda K, Takata T, et al. Chem. Commun., 2010, 46(39):7313-7315  doi: 10.1039/c0cc02425b

    238. [238]

      Wang J, Li B, Chen J Z, et al. Appl. Surf. Sci., 2012, 259: 118-123  doi: 10.1016/j.apsusc.2012.07.003

    239. [239]

      Shen S H, Chen X B, Ren F, et al. Nanoscale Res. Lett., 2011, 6:290  doi: 10.1186/1556-276X-6-290

    240. [240]

      Yang J H, Yan H J, Wang X L, et al. J. Catal., 2012, 290: 151-157  doi: 10.1016/j.jcat.2012.03.008

    241. [241]

      Townsend T K, Browning N D, Osterloh F E. Energy Environ. Sci., 2012, 5(11):9543-9550  doi: 10.1039/c2ee22665k

    242. [242]

      Maeda K, Sakamoto N, Ikeda T, et al. Chem. Eur. J., 2010, 16(26):7750-7759  doi: 10.1002/chem.201000616

    243. [243]

      LIU En-Ke, ZHU Bing-Sheng, LUO Jin-Sheng. Physics of Semiconductor. 7th Ed. Beijing:Electronic Industry Press, 2011: 216-219

    244. [244]

      Luo M H, Yao W F, Huang C P, et al. J. Mater. Chem. A, 2015, 3(26):13884-13891  doi: 10.1039/C5TA00218D

    245. [245]

      Cui E T, Lu G X. J. Phys. Chem. C, 2013, 117(50):26415-26425  doi: 10.1021/jp4104933

    246. [246]

      Li Y H, Xing J, Chen Z J, et al. Nat. Commun., 2013, 4:2500

    247. [247]

      Ma S S K, Maeda K, Abe R, et al. Energy Environ. Sci., 2012, 5(8):8390-8397  doi: 10.1039/c2ee21801a

    248. [248]

      Yan H J, Yang J H, Ma G J, et al. J. Catal., 2009, 266(2): 165-168  doi: 10.1016/j.jcat.2009.06.024

    249. [249]

      Xie Y P, Liu G, Lu G Q, et al. Nanoscale, 2012, 4(4):1267-1270  doi: 10.1039/c2nr11846g

    250. [250]

      Zhao X, Lü L, Pan B C, et al. Chem. Eng. J., 2011, 170(2/3):381-394

    251. [251]

      Zhu L W, Zhou L K, Li H X, et al. Mater. Lett., 2013, 95: 13-16  doi: 10.1016/j.matlet.2013.01.004

    252. [252]

      Xiang Q J, Yu J G, Jaroniec M. Chem. Soc. Rev., 2012, 41(2):782-796  doi: 10.1039/C1CS15172J

    253. [253]

      Xie X Q, Kretschmer K, Wang G X. Nanoscale, 2015, 7(32):13278-13292  doi: 10.1039/C5NR03338A

    254. [254]

      Upadhyay R K, Soin N, Roy S S. RSC Adv., 2014, 4(8): 3823-3851  doi: 10.1039/C3RA45013A

    255. [255]

      An X Q, Yu J C. RSC Adv., 2011, 1(8):1426-1434  doi: 10.1039/c1ra00382h

    256. [256]

      Li Q, Guo B D, Yu J G, et al. J. Am. Chem. Soc., 2011, 133(28):10878-10884  doi: 10.1021/ja2025454

    257. [257]

      Iwashina K, Iwase A, Ng Y H, et al. J. Am. Chem. Soc., 2015, 137(2):604-607  doi: 10.1021/ja511615s

    258. [258]

      Yu Z, Lia F, Sun L C. Energy Environ. Sci., 2015, 8(3):760-775  doi: 10.1039/C4EE03565H

    259. [259]

      Borgarello E, Kiwi J, Pelizzetti E, et al. Nature, 1981, 289(5794):158-160  doi: 10.1038/289158a0

    260. [260]

      Maeda K, Eguchi M, Youngblood W J, et al. Chem. Mater., 2008, 20(21):6770-6778  doi: 10.1021/cm801807b

    261. [261]

      Zhang X, Peng T Y, Song S. J. Mater. Chem. A, 2016, 4(7): 2365-2402  doi: 10.1039/C5TA08939E

    262. [262]

      Willkomm J, Orchard K L, Reynal A. Chem. Soc. Rev., 2016, 45(1):9-23  doi: 10.1039/C5CS00733J

    263. [263]

      Abe R, Shinmei K, Hara K. Chem. Commun., 2009(24): 3577-3579  doi: 10.1039/b905935k

    264. [264]

      Tada H, Fujishima M, Kobayashi H. Chem. Soc. Rev., 2011, 40(7):4232-4243  doi: 10.1039/c0cs00211a

    265. [265]

      Wang G, Yang X, Qian F, et al. Nano Lett., 2010, 10(3): 1088-1092  doi: 10.1021/nl100250z

    266. [266]

      Sheng W, Sun B, Shi T, et al. ACS Nano, 2014, 8(7):7163-7169  doi: 10.1021/nn502121t

    267. [267]

      Qi L, Yu J, Jaroniec M. Phys. Chem. Chem. Phys., 2011, 13(19):8915-8923  doi: 10.1039/c1cp20079h

    268. [268]

      Yeh T F, Teng C Y, Chen S J, et al. Adv. Mater., 2014, 26(20):3297-3303  doi: 10.1002/adma.v26.20

    269. [269]

      Li H T, He X D, Kang Z H, et al. Angew. Chem. Int. Ed., 2010, 49(26):4430-4434  doi: 10.1002/anie.200906154

    270. [270]

      Zhang H, Huang H, Ming H, et al. J. Mater. Chem., 2012, 22(21):10501-10506  doi: 10.1039/c2jm30703k

    271. [271]

      Zhou N, López-Puente V, Wang Q, et al. RSC Adv., 2015, 5(37):29076-29097  doi: 10.1039/C5RA01819F

    272. [272]

      Warren S C, Thimsen E. Energy Environ. Sci., 2012, 5(1): 5133-5146  doi: 10.1039/C1EE02875H

    273. [273]

      Wang P, Huang B, Dai Y, et al. Phys. Chem. Chem. Phys., 2012, 14(28):9813-9825  doi: 10.1039/c2cp40823f

    274. [274]

      Kelly K L, Coronado E, Zhao L L, et al. J. Phys. Chem. B, 2003, 107(3):668-677  doi: 10.1021/jp026731y

    275. [275]

      Murphy C J, Gole A M, Stone J W, et al. Acc. Chem. Res., 2008, 41(12):1721-1730  doi: 10.1021/ar800035u

    276. [276]

      Biesso A, Qian W, Huang X H, et al. J. Am. Chem. Soc., 2009, 131(7):2442-2443  doi: 10.1021/ja8088873

    277. [277]

      Liu Z W, Hou W B, Pavaskar P, et al. Nano Lett., 2011, 11(3):1111-1116  doi: 10.1021/nl104005n

    278. [278]

      Wang P, Huang B B, Qin X Y, et al. Angew. Chem., Int. Ed., 2008, 47(41):7931-7933  doi: 10.1002/anie.v47:41

  • 加载中
    1. [1]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    15. [15]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    16. [16]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(743)
  • Abstract views(21318)
  • HTML views(6981)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return