Citation: WANG Yun, LIANG Yan, HE Jun, ZHANG Wen-Xia, LUO Jian-Wei, LU Ji-Qing, LUO Meng-Fei. Catalytic Behaviors of Cr2O3 and CrO3/Cr2O3 Catalysts for Gas Phase Fluorination of 2-Chloro-1,1,1-trifluoroethane:Active Species and Catalyst Deactivation[J]. Chinese Journal of Inorganic Chemistry, ;2017, 33(1): 123-133. doi: 10.11862/CJIC.2016.281 shu

Catalytic Behaviors of Cr2O3 and CrO3/Cr2O3 Catalysts for Gas Phase Fluorination of 2-Chloro-1,1,1-trifluoroethane:Active Species and Catalyst Deactivation

  • Corresponding author: LUO Meng-Fei, mengfeiluo@zjnu.cn
  • Received Date: 23 June 2016
    Revised Date: 28 October 2016

Figures(9)

  • Two Cr-based model catalysts (Cr2O3 and CrO3/Cr2O3) were prepared respectively by precipitation and impregnation method and tested for gas phase fluorination of 2-chloro-1,1,1-trifluoroethane to synthesize 1,1,1,2-tetrafluoroethane. It was found that the Cr2O3 catalyst containing low valent Cr species (Cr3+) was stable during the reaction with a steady state conversion of 18.5%. On the contrary, the CrO3/Cr2O3 catalyst containing both high valent Cr species (Cr6+) and low valent Cr species (Cr3+) had higher initial activity (30.6%) but it deactivated rapidly, with the same activity as the Cr2O3 catalyst at steady state. Moreover, quantitative analyses showed that the Cr6+ species in the CrO3/Cr2O3 catalyst had an initial turnover frequency of 1.71×10-4 molHCFC-133a·molCr(Ⅵ)-1·s-1, which was much higher than that of the Cr3+ species (4.16×10-5 molHCFC-133a·molCr(Ⅲ)-1·s-1) in the Cr2O3 catalyst. In addition, the characterization results revealed that the Cr2O3 remained its structure while the high valent Cr species in the CrO3/Cr2O3 reacted with HF to form catalytically active CrOxFy species. However, such CrOxFy species could either volatilize during the reaction or transformed to stable but inactive CrF3, which accounted for the catalyst deactivation.
  • 加载中
    1. [1]

      Cheng Y X, Fan J L, Xie Z Y, et al. J. Fluorine Chem., 2013, 156:66-72  doi: 10.1016/j. jfluchem.2013.08.016

    2. [2]

      Cochon C, Corre T, Celerier S, et al. Appl. Catal. A, 2012,413(3):149-156

    3. [3]

      Mao W, Wang B, Ma Y B, et al. Catal. Commun., 2014,49(2):73-77

    4. [4]

      Yoshimura T, Homoto Y, Yamada Y, et al. US Patent, 6011185. 1996-08-29.

    5. [5]

      Brunet S, Boussand B, Martin D. J. Catal., 1997,171(3):287-292

    6. [6]

      YU Hong-Bo, WANG Yue-Juan, PENG Xiao-Bo, et al. Chinese J. Inorg. Chem., 2012,28(5):905-909
       

    7. [7]

      Ünveren E, Kemnitz E, Lippitz A, et al. J. Phys. Chem. B, 2005,109(9):903-1913

    8. [8]

      York S C, Cox D F. J. Phys. Chem. B, 2003,107(13):5182-5189

    9. [9]

      ZHONG Yong-Hui, ZHOU Qi, LIU Jia-Qin , et al. Chinese J. Inorg. Chem., 2013,29(10):2133-2139
       

    10. [10]

      Alonso C, Morato A, Medina F, et al. Appl. Catal. B, 2003, 40(3):259-269

    11. [11]

      Weckhuysen B M, Wachs I E, Schoonheydt R A. Chem. Rev., 1996,96:3327-3349  doi: 10.1021/cr940044o

    12. [12]

      Rao J M, Sivaprasad A, Rao P S, et al. J. Catal., 1999,184(4):105-111

    13. [13]

      Lee H, Kim H S, Kim H, et al. J. Mol. Catal. A:Chem., 1998,136(3):85-89

    14. [14]

      Cho D H, Kim Y G, Chung M J, et al. Appl. Catal. B, 1998, 18(3):251-261

    15. [15]

      Teinz K, Manuel S R, Chen B B, et al. Appl. Catal. B, 2015, 165(5):200-208

    16. [16]

      Sekiya A, Quan H D, Tamura M, et al. J. Fluorine Chem., 2001,112:145-148  doi: 10.1016/S0022-1139(01)00483-3

    17. [17]

      Quan H D, Tamura M, Matsukawa Y, et al. J. Mol. Catal. A: Chem., 2004,219(2):79-85

    18. [18]

      Kohne A, Kemnitz E. J. Fluorine Chem., 1995,75:103-110  doi: 10.1016/0022-1139(95)03320-D

    19. [19]

      Brunet S, Requieme B, Colnay E, et al. Appl. Catal. B, 1995,5(4):305-317  doi: 10.1016/0926-3373(94)00048-4

    20. [20]

      He J, Lu J Q, Xie G Q. Indian J. Chem. Technol., 2009,48A: 489-497

    21. [21]

      Huang J J, Fu Y P, Wang J Y, et al. Mater. Res. Bull., 2014, 51(2):63-68

    22. [22]

      Mierczynski P, Maniecki T P, Maniukiewicz W, et al. React. Kinet. Catal. Lett., 2011,104(2):139-148

    23. [23]

      He J, Xie G Q, Lu J Q, et al. J. Catal., 2008,253:1-10  doi: 10.1016/j. jcat.2007.11.005

    24. [24]

      Zhu Y, Fiedler K, Rüdiger St, et al. J. Catal., 2003,219:8-16  doi: 10.1016/S0021-9517(03)00183-0

    25. [25]

      Adamczyk B, Boese O, Weiher N, et al. J. Fluorine Chem., 2000,101:239-246  doi: 10.1016/S0022-1139(99)00165-7

    26. [26]

      Kemnitz E, Hess A, Rother G, et al. J. Catal., 1996,159(3): 332-339

    27. [27]

      Cuzzato P, Alberani P, Zappoli S, et al. Appl. Catal. A, 2007,326(5):48-54

    28. [28]

      Xie Z Y, Fan J L, Cheng Y X, et al. Ind. Eng. Chem. Res., 2013,52(13):3295-3299

    29. [29]

      Xia Y S, Dai H, Jiang H Y, et al. Environ. Sci. Technol., 2009,43(11):8355-8360

    30. [30]

      Wang F, Fan J L, Zhao Y, et al. J. Fluorine Chem., 2014,166(2):78-83

    31. [31]

      Yim S D, Nam I S. J. Catal., 2004,221(7):601-611

    32. [32]

      Groppo E, Damin A, Bonino F, et al. Chem. Mater., 2005,17(9):2019-2027

    33. [33]

      Weckhuysen B M, Wachs I E. J. Phys. Chem., 1996,100: 14437-14442  doi: 10.1021/jp960543o

    34. [34]

      Kim D S, Tatibouet J M, Wachs E. J. Catal., 1992,136(3): 209-221

    35. [35]

      Loustaunau A, Fayolle-Romelaer R, Celerier S, et al. Catal. Lett., 2010,138(3):215-223

    36. [36]

      Xing L Q, Lu J Q, Bi Q Y, et al. J. Raman Spectrosc., 2011, 42:1095-1099  doi: 10.1002/jrs.2811

    37. [37]

      Hope E G, Jones P J, Levason W, et al. J. Chem. Soc., Dalton Trans., 1985:529-533

    38. [38]

      Kemnitz E, Hansen G, Kohne A. J. Mol. Catal., 1992,77(2): 93-200

    39. [39]

      Chung Y S, Lee H, Jeong H D, et al. J. Catal., 1998,175(3): 220-225

    40. [40]

      Hope E G, Jones P J, Tajik M, et al. J. Chem. Soc., Dalton Trans., 1984:2445-2447

    41. [41]

      Jia W Z, Jin L Y, Wang Y J, et al. J. Ind. Eng. Chem., 2011, 17(6):615-620

  • 加载中
    1. [1]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    2. [2]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    3. [3]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    4. [4]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    5. [5]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    6. [6]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    9. [9]

      Ruixin XUHongtuo LIChen SHIYanhong YAN . Factors influencing the spectral properties of composite luminescent materials SrTiO3: Eu3+/SrAl2O4: Eu2+, Dy3+. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2307-2316. doi: 10.11862/CJIC.20250055

    10. [10]

      Yi-Chang Yang Rui-Xi Wang Li-Ming Wu Ling Chen . Regulating the coplanarity of π-conjugated units through hydrogen bonding in FAHC2O4 and FAH2C3N3S3 crystals. Chinese Journal of Structural Chemistry, 2025, 44(10): 100714-100714. doi: 10.1016/j.cjsc.2025.100714

    11. [11]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    12. [12]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    13. [13]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    14. [14]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    15. [15]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    16. [16]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    17. [17]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    18. [18]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    19. [19]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    20. [20]

      Shuhao FENGFeibing XIONGYaqing LINHan SUXu HAN . Preparation and luminescent properties of alkaline metal doped Cd3Al2Ge3O12: Pr3+ orange phosphors. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 284-296. doi: 10.11862/CJIC.20250171

Metrics
  • PDF Downloads(0)
  • Abstract views(1894)
  • HTML views(234)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return