Citation: YANG Jia-Jia, JIANG Ke-Wang, LIN Xue-Mei, YING Zong-Rong, ZHANG Wen-Wen. Synthesis of g-C3N4/C Nanofibers by Electrospinning and Their Photodegradation Performance under Visible Light[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(12): 2088-2094. doi: 10.11862/CJIC.2016.279 shu

Synthesis of g-C3N4/C Nanofibers by Electrospinning and Their Photodegradation Performance under Visible Light

  • Corresponding author: YING Zong-Rong, 
  • Received Date: 28 March 2016
    Available Online: 9 October 2016

  • g-C3N4/C composite nanofibers were prepared via a combination process of electrospinning, preoxidation and carbonization by using g-C3N4 nanosheets and polyacrylonitrile as raw materials. Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) were employed to analyze the structure and morphology of the as-synthesized nanofibers. And UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) was used to assess their visible light response. The results show that the g-C3N4/C composite nanofibers exhibit good photocatalytic degradation activity toward rhodamine B under visible light, which originates from better ability of their partially amorphous carbon matrix to reduce the combination of the photogenerated electron and hole pair. The nanofiber membrane was not embrittled into powers or small flakes during the photocatalytic degradation process under stirring conditions, maintaining its integrity from begin to end. After several recovery and photocatalysis experiments, the membrane still maintained high photodegradation rate. This study reveals that the resulting nanofibers have excellent recycling stability to photodegradate rhodamine B under visible light.
  • 加载中
    1. [1]

      [1] Wang X C, Maeda K, Thomas A, et al. Nat. Mater., 2009,8(1):76-80

    2. [2]

      [2] CHEN Bo-Cai(陈博才), SHEN Yang(沈洋), WEI Jian-Hong (魏建红). Acta Phys.-Chim. Sin.(物理化学学报), 2016,32(6):1371-1382

    3. [3]

      [3] Cui Y J. Chin. J. Catal., 2015,36(3):372-379

    4. [4]

      [4] ZHAO Xue-Guo(赵学国), HUANG Li-Qun(黄丽群), LI Jia-Ke(李家科). Chinese J. Inorg. Chem.(无机化学学报), 2015, 31(12):2343-2348

    5. [5]

      [5] Liu L, Qi Y, Lu J, et al. Appl. Catal. B:Environ., 2016,183:133-141

    6. [6]

      [6] Liu L, Qi Y, Hu J, et al. Appl. Surf. Sci., 2015,351:1146-1154

    7. [7]

      [7] Bai X, Zong R, Li C, et al. Appl. Catal. B:Environ., 2014,147:82-91

    8. [8]

      [8] Maeda K, Wang X, Nishihara Y, et al. J. Phys. Chem. C, 2009,113(12):4940-4947

    9. [9]

      [9] Hughbanks T, Tian Y. Solid State Commun., 1995,96(5):321-325

    10. [10]

      [10] GUI Ming-Sheng(桂明生), WANG Peng-Fei(王鹏飞), YUAN Dong(袁东), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013,29(10):2057-2064

    11. [11]

      [11] Niu P, Zhang L, Liu G, et al. Adv. Funct. Mater., 2012,22(22):4763-4770.

    12. [12]

      [12] CHU Zeng-Yong(楚增勇), YUAN Bo(原博), YAN Ting-Nan (颜廷楠). J. Inorg. Mater.(无机材料学报), 2014,29(8):785-794

    13. [13]

      [13] Chen L, Huang D, Ren S, et al. Nanoscale, 2013,5(1):225-230

    14. [14]

      [14] Yang S, Gong Y, Zhang J, et al. Adv. Mater., 2013,25(17):2452-2456

    15. [15]

      [15] Li D, Xia Y. Adv. Mater., 2004,16(14):1151-1170

    16. [16]

      [16] Miao J, Miyauchi M, Simmons T, et al. J. Nanosci. Nanote-chnol., 2010,10(9):5507-5519

    17. [17]

      [17] LU Jian-Jian(卢建建), YING Zong-Rong(应宗荣), LIU Xin-Dong(刘信东), et al. Acta Phys-Chim. Sin.(物理化学学报), 2015,31(11):2099-2108

    18. [18]

      [18] SUN Li-Ping(孙丽萍), ZHAO Hui(赵辉), WANG Wen-Xue (王文学), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(4):757-762

    19. [19]

      [19] Nalbandian M, Zhang M, Sanchez J, et al. J. Mol. Catal. A:Chem., 2015,404:18-26

    20. [20]

      [20] Kim M, Kim Y, Lee K M, et al. Carbon, 2016,99:607-618

    21. [21]

      [21] ZHANG Jiao-Bo(张校菠), CHEN Ming-Hai(陈名海), ZHANG Jiao-Gang(张校刚), et al. Acta Phys-Chim. Sin.(物理化学学报), 2010,26(12):3169-3174

    22. [22]

      [22] Di Valentin C, Pacchioni G, Selloni A. Chem. Mater., 2005, 17(26):6656-6665

    23. [23]

      [23] Samadi M, Shivaee H A, Pourjavadi A, et al. Appl. Catal. A:Gen., 2013,466:153-160

    24. [24]

      [24] Lin Q, Li L, Liang S, et al. Appl. Catal. B:Environ., 2015, 163:135-142

    25. [25]

      [25] Lee H, Kim H, Kang S, et al. J. Ind. Eng. Chem., 2015,21:736-740

    26. [26]

      [26] Cui Y, Tang Y, Wang X. Mater. Lett., 2015,161:197-200

    27. [27]

      [27] Liu L, Qi Y, Hu J, et al. Mater. Lett., 2015,158:278-281

    28. [28]

      [28] LI Dong-Feng(李东风), WANG Hao-Jing(王浩静), WANG Xin-Kui(王心葵). Spectrosc. Spect. Anal.(光谱学与光谱分析), 2007,27(11):2249-2253

    29. [29]

      [29] Bourlinos A B, Giannelis E P, Sanakis Y, et al. Carbon, 2006,44(10):1906-1912

    30. [30]

      [30] Mousavi M, Habibi-Yangjeh A. J. Colloid Interface Sci., 2016,465:83-92

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    3. [3]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    4. [4]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    5. [5]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    6. [6]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    8. [8]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    9. [9]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    13. [13]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    14. [14]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    15. [15]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    20. [20]

      Yanan Fan Jingjing Huang . Interactive Electronic Courseware Facilitates the Development of Integrated Undergraduate-Graduate Instrumental Analysis Laboratory Courses: A Case Study of UV-Vis Spectroscopy Analysis Experiment. University Chemistry, 2025, 40(10): 282-287. doi: 10.12461/PKU.DXHX202411009

Metrics
  • PDF Downloads(0)
  • Abstract views(635)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return