Citation: YANG Yang, HUO Wen-Shan, ZHOU Zheng, ZHANG Qi, ZENG Han. Direct Electrochemistry of Electrode Modified with Thin Film of Laccase Immobilized in Nano-Composite of Polyaniline-CoC2O4[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(12): 2117-2128. doi: 10.11862/CJIC.2016.277 shu

Direct Electrochemistry of Electrode Modified with Thin Film of Laccase Immobilized in Nano-Composite of Polyaniline-CoC2O4

  • Corresponding author: ZENG Han, 
  • Received Date: 13 June 2016
    Available Online: 14 October 2016

    Fund Project:

  • Electrochemical methods including cyclic voltammetry, differential pulse voltammetry, electrochemical impedance spectrometry and chronoamperometry, together with auxiliary means such as F-T infrared spectrometry, Ultra-violet visible spectrometry, atomic force microscopy, transmission electron microscopy and atomic adsorption spectrometry were used to characterize the chemical composition, structure and morphology of polyaniline-CoC2O4 nano-composite, to measure the change of conductivity in nano-composite before and after Laccase immobilization and to investigate the direct electrochemistry of redox protein molecules entrapped in the matrix. Its catalytic effect on oxygen reduction reaction and performance as electrochemical sensor for oxygen detection were evaluated subsequently. Results from tests indicated this Laccase-based electrode shuttled electrons from enzyme active site T2 as primary electron acceptor to dioxygen molecules attached chemically in the matrix, achieving the electro-reduction of O2 in the absence of any external mediator with its apparent electron transferring rate:0.017 s-1. This laccase-based electrode displayed favorable catalytic effect on oxygen reduction reaction (onset potential for catalysis:460 mV vs NHE, apparent turn-over frequency for oxygen reduction reaction:2.6×10-4 s-1). Enzymatic oxygen electro-reduction into water should be ascribed to the key process to promote the performance of biocathode. This Laccase based electrochemical sensor had such advantages as extremely low detection limit (0.20 μmol·L-1) to oxygen monitoring, wide linear responding range of concentration (0.4~7.5 μmol·L-1) and high affinity towards substrate (KM=122.4 μmol·L-1).
  • 加载中
    1. [1]

      [1] Zheng W, Ma J Y, Guo F, et al. Bio-Med. Mater. Eng., 2014, 24(1):229-235

    2. [2]

      [2] Fokina O, Eipper J, Winandy L, et al. Bioresour. Technol., 2015,175:445-453

    3. [3]

      [3] Zhang L L, Bai L, Xu M, et al. Nano Energy, 2015,11:48-55

    4. [4]

      [4] Pankratov D V, Zeifman Y S, Morozova O V, et al. Electroanalysis, 2013,25(5):1143-1149

    5. [5]

      [5] Scherbahn V, Putze M T, Dietzel B, et al. Biosens. Bioelectron., 2014,61(21):631-638

    6. [6]

      [6] Liu Y, Qu X H, Guo H W, et al. Biosens. Bioelectron., 2006, 21(12):2195-2201

    7. [7]

      [7] Rasmussen M, Ritzmann R E, Lee I, et al. J. Am. Chem. Soc., 2012,134(3):1458-1460

    8. [8]

      [8] Ivanov I, Vidakovic-koch T, Sundmacher K J. Electroanal. Chem., 2013,690(2):68-73

    9. [9]

      [9] Zelechowska K, Stolarczyk K, Lyp D, et al. Biocyber. Biomed. Eng., 2013,33(4):235-245

    10. [10]

      [10] Cardoso F P, Neto S A, Fenga P G, et al. Electrochim. Acta, 2013,90(5):90-94

    11. [11]

      [11] Farneth W E, Diner B A, Gierke T D, et al. Electroanal. Chem., 2005,581(2):190-196

    12. [12]

      [12] Zhang L, Zhang Q, Lu X B, et al. Biosens. Bioelectron., 2007,23(1):102-106

    13. [13]

      [13] Lu X B, Wen Z H, Li J H. Biomaterials, 2006,27(33):5740-5747

    14. [14]

      [14] Royo B, Sosna M, Asensio A C, et al. J. Electroanal. Chem., 2013,704(9):67-74

    15. [15]

      [15] Filip J, Tkac J. Bioelectrochemistry, 2014,96(2):14-20

    16. [16]

      [16] Manesh K M, Santhosh P, Gopalan A I, et al. Electroanalysis, 2006,18(16):1564-1571

    17. [17]

      [17] Santhosh P, Manesh K M, Lee K P, et al. Electroanalysis, 2006,18(9):894-903

    18. [18]

      [18] CAO Zheng-Yan(曹正艳), YANG Chun-Ming(杨春明), LI Hai-Yin(李海银), et al. Chinese J. Appl. Chem.(应用化学), 2009,26(11):1264-1268

    19. [19]

      [19] Blandford C F, Heather R S, Armstrong F A. Chem. Commun., 2007,43(17):1710-1712

    20. [20]

      [20] HUANG Jun(黄俊), ZHOU Ju-Ying(周菊英), XIAO Hai-Yan(肖海燕), et al. Acta Chim. Sinica(化学学报), 2005,63(14):1343-1347

    21. [21]

      [21] ZENG Han(曾涵), ZHAO Shu-Xian(赵淑贤), GONG Lan-Xin(龚兰新), et al. Chinese J. Appl. Chem.(应用化学), 2013,30(4):436-443

    22. [22]

      [22] Zhao H Y, Zhou H M, Zhang J X, et al. Biosens. Bioelectron., 2009,25:463-468

    23. [23]

      [23] Shleev S, Christenson A, Serezhenkov V, et al. Biochem. J., 2005,385:745-754

    24. [24]

      [24] Qiu H J, Xu C X, Huang X R, et al. J. Phys. Chem. C, 2009, 113(6):2521-2525

    25. [25]

      [25] Zhu Y F, Kaskel S, Shi J L, et al. Chem. Mater., 2007,19:6408-6413

    26. [26]

      [26] ZENG Han(曾涵), YANG Yang(杨阳), LI Xiao-Juan(李小娟), et al. Chin. J. Anal. Chem.(分析化学), 2015,43(12):1794-1800

    27. [27]

      [27] Rahman M A, Noh H B, Shim Y B. Anal. Chem., 2008,80:8020-8027

    28. [28]

      [28] Osman M H, Shah A A, Walsh F C. Biosens. Bioelectron., 2011,26:3087-3102

    29. [29]

      [29] ZENG Han(曾涵), LIAO Ling-Wen(廖铃文), LI Ming-Fang (李明芳), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2010,26(12):3217-3224

    30. [30]

      [30] Mano N, Kim H H, Zhang Y C, et al. J. Am. Chem. Soc., 2002,124(22):6480-6486

    31. [31]

      [31] Mao F, Mano N, Heller A. J. Am. Chem. Soc., 2003,125(16):4951-4957

    32. [32]

      [32] Kano K, Ikeda T. Anal. Sci., 2000,16(10):1013-1021

    33. [33]

      [33] Katz E, Heleg-Shabtai V, Willner I, et al. Angew. Chem. Int. Ed., 1998,37(23):3253-3256

    34. [34]

      [34] Pita M, Shleev S, Ruzgas T, et al. Electrochem. Commun., 2006,8(5):747-753

    35. [35]

      [35] Ramasamy R P, Luckarift H R, Ivnitski D M, et al. Chem. Commun., 2010,46(33):6045-6047

    36. [36]

      [36] Zheng W, Zhou H M, Zheng Y F, et al. Chem. Phys. Lett., 2008,457(4/5/6):381-385

    37. [37]

      [37] Soukharev V, Mano N, Heller A. J. Am. Chem. Soc., 2004, 126(27):8368-8369

    38. [38]

      [38] Farneth W E, DAmore M B. J. Electroanal. Chem., 2005, 581(2):197-205

  • 加载中
    1. [1]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    6. [6]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    10. [10]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    11. [11]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    12. [12]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    13. [13]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    14. [14]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    17. [17]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    18. [18]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    19. [19]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(0)
  • Abstract views(860)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return