Citation: SHENG Shuang, ZHAO Hui, HAO Ju-Hong, SUN Li-Ping, HUO Li-Hua. Preparation and Electrochemical Properties of (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ-Ce0.9Gd0.1O2-δComposite Cathode[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(12): 2143-2150. doi: 10.11862/CJIC.2016.275 shu

Preparation and Electrochemical Properties of (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ-Ce0.9Gd0.1O2-δComposite Cathode

  • Corresponding author: SUN Li-Ping, 
  • Received Date: 8 July 2016
    Available Online: 14 October 2016

    Fund Project:

  • (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG) is prepared by EDTA-citrate process, and forms composite cathode with Ce0.9Gd0.1O2-δ(CGO). XRD and SEM results demonstrate that PLNCG is chemical compatible with CGO at 1 000℃. The electrochemical measurements show that the polarization resistance (Rp) of PLNCG-30%CGO is 0.092 Ω·cm2 at 700℃. When the current density reaches 113.3 mA·cm-2, the cathode overpotential is only 39.3 mV at 700℃ in air. The oxygen partial pressure dependence of Rp indicates that the rate limiting step of the composite cathode is charge transfer process. The maximum power density of anode-support single cell (Ni-CGO/CGO/PLNCG-30%CGO) reaches 569 mW·cm-2 at 700℃ with open circuit voltage (OCV) of 0.76 V.
  • 加载中
    1. [1]

      [1] Steele B C H, Heinzel A. Nature, 2001,414:345-352

    2. [2]

      [2] Beckel D, Bieberle-Hütter A, Harvey A, et al. J. Power Sources, 2007,173(1):325-345

    3. [3]

      [3] SUN Li-Ping(孙丽萍), LI Qiang(李强), ZHAO Hui(赵辉), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(5):1045-1050

    4. [4]

      [4] Li Q, Sun L P, Huo L H, et al. Int. J. Hydrogen Energy, 2010,35:9151-9157

    5. [5]

      [5] Xia T, Lin N, Zhao H, et al. J. Power Sources, 2009,192:291-296

    6. [6]

      [6] ZHANG Han(张瀚), XIA Chang-Rong(夏长荣). Chinese J. Inorg. Chem.(无机化学学报), 2010,26(10):1875-1879

    7. [7]

      [7] XIAO Hui(肖辉), SUN Li-Ping(孙丽萍), ZHAO Hui(赵辉), et al. Chinese J. Inorg. Chem.(无机化学学报), 2015,31(6):1139-1144

    8. [8]

      [8] Xu Q, Huang D P, Zhang F, et al. J. Alloys Compd., 2008, 454:460-465

    9. [9]

      [9] Liu Z, Cheng L Z, Han M F. J. Power Sources, 2011,196:868-871

    10. [10]

      [10] Shao Z P, Haile S M. Nature, 2004,431:170-173

    11. [11]

      [11] Wang F, Zhou Q J, He T M, et al. J. Power Sources, 2010, 195:3772-3778

    12. [12]

      [12] Ding H P, Lin B, Liu X Q, et al. Electrochem. Commun., 2008,10:1388-1391

    13. [13]

      [13] Zhou X D, Templeton J W, Nie Z, et al. Electrochim. Acta, 2012,71:44-49

    14. [14]

      [14] Ferchaud C, Grenier J C,Ye Z S, et al. J. Power Sources, 2011,196:1872-1879

    15. [15]

      [15] Yashima M, Yamada H, Ishihara T, et al. Chem. Mater., 2012,24:4100-4113

    16. [16]

      [16] Wang Y F, Cheng J G, Jiang Q M, et al. J. Power Sources, 2011,196:3104-3108

    17. [17]

      [17] Kovalevsky A V, Kharton V V, Yaremchenko A A, et al. J. Electroceram, 2007,18:205-218

    18. [18]

      [18] Ishihara T, Nakashima K, Okada S, et al. Solid State Ionics, 2008,179:1367-1371

    19. [19]

      [19] Peng S J,Wei Y Y, Xue J, et al. Int. J. Hydrogen Energy, 2013,38:10552-10558

    20. [20]

      [20] Zhou Q J, Wang F, Shen Y, et al. J. Power Sources, 2010, 195:2174-2181

    21. [21]

      [21] LI Qiang(李强), FAN Yong(范勇), SUN Li-Ping(孙丽萍), et al. Chinese J. Inorg. Chem.(无机化学学报), 2007,23(2):300-304

    22. [22]

      [22] Leng Y J, Chan S H, Liu Q L. Int. J. Hydrogen Energy, 2008,33:3808-3817

    23. [23]

      [23] Park Y M, Kim J H, Kim H. Int. J. Hydrogen Energy, 2011, 36:9169-9179

    24. [24]

      [24] Khandale A P, Lajurkar R P, Bhoga S S. Int. J. Hydrogen Energy, 2014,39:19039-19050

    25. [25]

      [25] Meng X W, Lü S Q, Ji Y, et al. Ceram. Int., 2015,41:12107-12114

    26. [26]

      [26] Yashima M, Sirikanda N, Ishihara T. J. Am. Chem. Soc., 2010,132:2385-2392

    27. [27]

      [27] Li Q, Fan Y, Zhao H, et al. J. Power Sources, 2007,167:64-68

    28. [28]

      [28] Sun C, Li Q, Sun L P, et al. Mater. Res. Bull., 2014,53:65-69

    29. [29]

      [29] Li Q, Zhao H, Huo L H, et al. Electrochem. Commun., 2007,9:1508-1512

    30. [30]

      [30] Dusastre V, Kilner J A. Solid State Ionics, 1999,126:163-174

    31. [31]

      [31] Simner S P, Anderson M D, Coleman J E, et al. J. Power Sources, 2006,161:115-122

    32. [32]

      [32] Martínez J P, López D M, Morales R, et al. Int. J. Hydrogen Energy, 2009,34:9486-9495

    33. [33]

      [33] Pang S L, Jiang X N, Li X N, et al. J. Power Sources, 2012,204:53-59

    34. [34]

      [34] Chen D J, Ran R, Zhang K, et al. J. Power Sources, 2009, 188:96-105

    35. [35]

      [35] Gao Z, Liu X M, Bergman B, et al. J. Power Sources, 2011, 196:9195-9203

    36. [36]

      [36] Zhao H, Huo L H, Gao S. J. Power Sources, 2004,125:149-154

    37. [37]

      [37] Li Q, Xia T, Sun L P, et al. Electrochim. Acta, 2014,150:151-156

    38. [38]

      [38] Li J, Zhang N Q, Ni D, et al. Int. J. Hydrogen Energy, 2011,36:7641-7648

    39. [39]

      [39] Lee H H, Park I Y, Park J H, et al. Int. J. Hydrogen Energy, 2015,40:11998-12002

    40. [40]

      [40] Li H, Sun L P, Li Q, et al. Int. J. Hydrogen Energy, 2015, 40:12761-12769

    41. [41]

      [41] Zhang L L, Liu M, Huang J H, et al. Int. J. Hydrogen Energy, 2014,39:7972-7979

    42. [42]

      [42] Wang Y X,Zhao X Y, Lü S Q, et al. Ceram. Int., 2014,40:7321-7327

    43. [43]

      [43] Baek S W, Jeong J, Schlegl H, et al. Ceram. Int., 2016,42:2402-2409

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    3. [3]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    4. [4]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    5. [5]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    6. [6]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    7. [7]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    8. [8]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    9. [9]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    15. [15]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    16. [16]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    17. [17]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    20. [20]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

Metrics
  • PDF Downloads(0)
  • Abstract views(337)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return