Citation: MAO Lan-Lan, ZHANG Li-Ming, DENG Yan, LÜ Zhuo-Xuan, HE Nong-Yue. Accurate Detection of DNA Based on the NaYF4: Yb, Er Upconversion Nanoparticles[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(12): 2095-2101. doi: 10.11862/CJIC.2016.271 shu

Accurate Detection of DNA Based on the NaYF4: Yb, Er Upconversion Nanoparticles

  • Corresponding author: LÜ Zhuo-Xuan,  HE Nong-Yue, 
  • Received Date: 9 April 2016
    Available Online: 24 September 2016

    Fund Project:

  • A new method for improving the accuracy of DNA detection has been developed, which was based on the base stacking principle and the fluorescence of NaYF4:Yb, Er UCNPs. Firstly, the NaYF4:Yb, Er UCNPs were synthesized by thermal decomposition method and functionalized with denatured bovine serum albumin. Then, the denatured bovine serum albumin-functionalized OA/NaYF4:Yb, Er UCNPs were conjugated with amino group-modified DNA probes to form upconversion fluorescence labeled probes and detect DNA. The results showed that the method of using the fluorescence of NaYF4:Yb, Er UCNPs as a reference standard to quantitatively detect target DNA concentration had higher accuracy than that of only using a single FAM fluorescence intensity, and the operation and equipment errors was effectively avoid during the experiment. Moreover, this method can reach the detection limit as low as 5 nmol·L-1 without amplification, displays a good linear relationship in wide concentration range and a high specificity, and also can effectively differenciate single-base mismatch sequences.
  • 加载中
    1. [1]

      [1] YU Ran (於然), XIE Fei (谢飞), MA Xue-Mei (马雪梅). Beijing Biomed. Eng.(北京生物医学工程), 2015,34(3):304-309

    2. [2]

      [2] Jiang S, Gnanasammandhan M K, Zhang Y. J. R. Soc. Interface, 2010,7(42):3-18

    3. [3]

      [3] CHEN Zhi-Gang(陈志钢), SONG Yue-Lin(宋岳林), TIAN Qi-Wei(田启威), et al. Mod. Chem. Ind.(现代化工), 2010(7):27-31

    4. [4]

      [4] LI Shu-Quan(李树全), LIN Jian-Ming(林建明), WU Ji-Huai (吴季怀), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009,25(1):60-64

    5. [5]

      [5] LIU Tao(刘涛), SUN Li-Ning(孙丽宁), LIU Zheng(刘政), et al. Prog. Chem.(化学进展), 2011,24(2/3):304-317

    6. [6]

      [6] ZHAO Lian(赵莲), FENG Jian(冯建). Chem. Bioeng.(化学与生物工程), 2013,30(4):22-26

    7. [7]

      [7] Chatterjee D K, Gnanasammandhan M K, Zhang Y. Small, 2010,6(24):2781-2795

    8. [8]

      [8] WANG Yi-Lin (王益林), WAN Xin (万鑫), LIU Sheng-Yan (刘声燕), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012, 28(1):97-102

    9. [9]

      [9] WANG Xue-Ting (王雪婷), YU Jun-Sheng (于俊生), XIE Ying (谢颖). Chinese J. Inorg. Chem.(无机化学学报), 2007,28(7):1185-1193

    10. [10]

      [10] XIE Ying(谢颖), XU Jing-Juan(徐静娟), YU Jun-Shegn (于俊生), et al. Chinese J. Inorg. Chem.(无机化学学报), 2004,20(6):663-667

    11. [11]

      [11] WANG Shi-Ting(王士婷), YE Song(叶松), WANG De-Ping (王德平). Mater. Rev.(材料导报), 2012,26(9):65-68

    12. [12]

      [12] Chen X, Zhao Z, Jiang M, et al. New J. Chem., 2013,37(6):1782-1788

    13. [13]

      [13] Jin J, Gu Y J, Man C W Y, et al. ACS Nano, 2011,5(10):7838-7847

    14. [14]

      [14] Liu S J, Zhang L L, Yang T S, et al. ACS Appl. Mater. Interfaces, 2014,6(14):11013-11017

    15. [15]

      [15] Ma T C, Ma Y, Liu S J, et al. J. Mater. Chem. C, 2015,3(26):6616-6620

    16. [16]

      [16] Li Z, Liang T, Lv S w, et al. J. Am. Chem. Soc., 2015,137(34):11179-11185

    17. [17]

      [17] Xiao Y, Zeng L Y, Xia T, et al. Angew. Chem. Int. Ed., 2015,54(18):5323-5327

    18. [18]

      [18] Yuan P, Lee Y H, Gnanasammandhan M K, et al. Nanoscale, 2012,4(16):5132-5137

    19. [19]

      [19] Bogdan N, Vetrone F, Ozin G A, et al. Nano Lett., 2011,11(2):835-840

    20. [20]

      [20] Zhang L M, Lu Z X, Bai Y Y, et al. J. Mater. Chem. B, 2013,1(9):1289-1295

    21. [21]

      [21] Zhang L M, Xia K, Bai Y Y, et al. J. Biomed. Nanotechnol., 2014,10(8):1440-1449

    22. [22]

      [22] Duan D M, Zheng K X, Shen Y, et al. Nucleic Acids Res., 2011,39(22):e154

    23. [23]

      [23] Lu Z X, Duan D M, Cao R, et al. Chem. Commun., 2011,47(26):7452-7454

  • 加载中
    1. [1]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    4. [4]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    5. [5]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    6. [6]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    7. [7]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    8. [8]

      Cuiping Yang Huiping Ding Jinpeng Hou Kai Li Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, 2024, 39(3): 178-190. doi: 10.3866/PKU.DXHX202309087

    9. [9]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    10. [10]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    11. [11]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    12. [12]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    15. [15]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    16. [16]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    17. [17]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    18. [18]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(0)
  • Abstract views(297)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return