Citation: ZHANG Bo, HE Jun, HUA Zheng-Shen, LU Haoqi, WANG Xin, PENG Hui-Fen. Effect of MoO42- Substitution on Electrochemical Properties of Nasicon Li3Fe2(PO4)3 Cathode[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(12): 2109-2116. doi: 10.11862/CJIC.2016.267 shu

Effect of MoO42- Substitution on Electrochemical Properties of Nasicon Li3Fe2(PO4)3 Cathode

  • Corresponding author: PENG Hui-Fen, 
  • Received Date: 19 May 2016
    Available Online: 19 September 2016

    Fund Project:

  • MoO42- polyanion was tried to substitute for PO43- partially in the Li3Fe2(PO4)3 compound. The results proved that the introduced MoO42- anions mainly dissolved in the Li3Fe2(PO4)3 and the corresponding electrochemical properties were improved apparently. Among the MoO42- substituted materials, the sample with MoO42- content of 0.3 presented the excellent electrochemical properties. Its initial discharging capacity was 113.7 mAh·g-1 at a rate of 0.5C, which was about 20.7% higher than that without any MoO42-. The capacity retention was about 94% at a rate of 0.5C after 60 cycles. Moreover, this material could restore 95% of the initial capacity when the discharging rate was reset back to 0.5C even after higher cycling rate of 5C. The boost in electrochemical properties for the MoO42- substituted samples is ascribed to the synergistic effects of improved redox ability, decreased potential polarization and charge transfer resistance as well as increased diffusion coefficient of lithium ions.
  • 加载中
    1. [1]

      [1] Armand M, Tarascon J M. Nature, 2008,451:652-657

    2. [2]

      [2] ZHAN Yu(张钰), SU Zhi(粟智), PAN Hui(潘会). Chinese J. Inorg. Chem.(无机化学学报), 2015,31(9):1827-1830

    3. [3]

      [3] Shukla A K, Kumar T P. Curr. Sci. India, 2008,94(3):314-331

    4. [4]

      [4] PANG Chun-Hui(庞春会), WU Chuan(吴川), WU Feng (吴锋), et al. J. Ceram. Soc. (硅酸盐学报), 2012,40(2):247-255

    5. [5]

      [5] Hassoun J, Kim J, Lee D J, et al. J. Power Sources, 2012, 202:308-313

    6. [6]

      [6] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997,144(4):1188-1194

    7. [7]

      [7] SONG Jian-Jun(宋建军), SHAO Guang-Jie(邵光杰), ZHAO Jian-Wei(赵健伟), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(3):615-620

    8. [8]

      [8] Gummow R J, Sharma N, Peterson V K, et al. J. Solid State Chem., 2012,188:32-37

    9. [9]

      [9] Plylahan N, Vidal-Abarca C, Lavela P, et al. Electrochim. Acta, 2012,62:124-131

    10. [10]

      [10] Yang S F, Zavalij P Y, Whittingham M S. Electrochem. Commun., 2001,3:505-508

    11. [11]

      [11] Andersson A S, Kalska B, Eyob P, et al. Solid State Ionics, 2001,140:63-70

    12. [12]

      [12] Karami H, Taala F. J. Power Sources, 2011,196:6400-6411

    13. [13]

      [13] Sun J K, Huang F Q, Wang Y M, et al. J. Alloys Compd., 2009,469(1/2):327-331

    14. [14]

      [14] Liu Z Q, Huang F Q, Sun J K. Mater. Sci. Eng., B, 2011, 176:1313-1316

    15. [15]

      [15] Tatsumisago M, Yoneda K, Minami T. J. Am. Ceram. Soc., 1988,71(9):766-769

    16. [16]

      [16] Tatsumisago M, Machida N, Minami T. J. Ceram. Soc. Jpn., 1987,95(2):197-201

    17. [17]

      [17] Magistris A, Chiodelli G. Solid State Ionics, 1983,9-10(1):611-615

    18. [18]

      [18] Carrette B, Ribes M, Souquet J L. Solid State Ionics, 1983, 9-10(1):735-737

    19. [19]

      [19] Hagh N M, Amatucci G G. J. Power Sources, 2014,256:457-469

    20. [20]

      [20] Bensch W, Bredow T, Ebert H, et al. Solid State Chem., 2009,37(2/3):206-225

    21. [21]

      [21] Wu Y P, Rahm E, Holze R. Electrochim. Acta, 2002,47(21):3491-3507

    22. [22]

      [22] SU Zhi(粟智), YE Shi-Hai(叶世海), WANG Yong-Long (王永龙). Chinese J. Inorg. Chem.(无机化学学报), 2010,26:693-700

    23. [23]

      [23] Geng S X, Yang Y G, Zhang Y G, et al. Electrochim. Acta, 2015,176:327-333

    24. [24]

      [24] PENG Hui-Fen(彭会芬), GAO Mei-Ling(高美伶), WANG Ming-Fang(王明芳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27:1969-1974

    25. [25]

      [25] Okada S, Yamaki J. J. Ind. Eng. Chem., 2004,10(7):1104-1113

    26. [26]

      [26] Manthiram A, Goodenough J B. Solid State Chem., 1987,71:349-360

    27. [27]

      [27] MA Li(马荔), CHEN Jin-Hong(陈虹锦). Basic Chemistry. 2nd Ed.(无机化学.2版). Beijing:Chemical Industry Press, 2011:478-478

    28. [28]

      [28] Masquelier C, Padhi A K, Nanjundaswamy K S, et al. J. Solid State Chem., 1998,135:228-234

    29. [29]

      [29] Xia Y, Zhang W K, Huang H, et al. Mater. Sci. Eng., B, 2011,176:633-639

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    17. [17]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    18. [18]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    19. [19]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    20. [20]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

Metrics
  • PDF Downloads(0)
  • Abstract views(305)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return