Citation: WANG Hui-Gang, ZHANG Qi, ZHANG Ji-Long, YU Feng, LI Rui-Feng. Nano Sulfated Zirconia Synthesis and Its Catalytic Properties in the Transesterification[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1959-1964. doi: 10.11862/CJIC.2016.264 shu

Nano Sulfated Zirconia Synthesis and Its Catalytic Properties in the Transesterification

  • Corresponding author: YU Feng, 
  • Received Date: 8 April 2016
    Available Online: 29 September 2016

    Fund Project:

  • Nano SO42-/ZrO2 solid acid catalysts were prepared by two-step crystallization-post impregnation method and their catalytic performance in the transesterification of vegetable oil with methanol was investigated. The results of XRD, N2 adsorption-desorption and TEM showed that the single tetragonal phase catalyst calcined at 600℃ was composed of nano crystals about 5~10 nm and had the specific surface area of 137 m2·g-1 and the pore size of 3.7 nm. NH3-TPD data indicated that the calcination temperature could improve the content and intensity of the surface acid, and that more superacid content was favorable to effect the efficient conversion under general conditions. In the transesterification reaction, under the operating conditions of 5%(w/w) of catalyst calcined at 600℃, the molar ratio of methanol to oil 20:1, at 135℃ and for 6 h, vegetable oil could be completely converted to fatty acid methyl esters. Compared with the traditional SO42-/ZrO2 catalyst, the nano SO42-/ZrO2 catalyst had a higher catalytic performance and good reuse at low reaction temperature.
  • 加载中
    1. [1]

      [1] Talebian-Kiakalaieh A, Amin N A S, Mazaheri H. Appl. Energy, 2013,104(2):683-710

    2. [2]

      [2] Helwani Z, Othman M R, Aziz N, et al. Appl. Catal. A:Gen., 2009,363(1):1-10

    3. [3]

      [3] Lam M K, Lee K T, Mohamed A R. Biotechnol. Adv., 2010, 28(4):500-518

    4. [4]

      [4] YU Hui(于荟), ZHU Yin-hua(朱银华), LIU Chang(刘畅), et al. Chin. J. Catal.(催化学报), 2009,30(3):265-271

    5. [5]

      [5] Reddy B M, Patil M K. Chem. Rev., 2009,109(6):2185-2208

    6. [6]

      [6] Saravanan K, Tyagi B, Shukla R S, et al. Appl. Catal. B: Environ., 2015,172-173:108-115

    7. [7]

      [7] Sharma Y C, Singh B, Korstad J. Biofuel Bioprod. Biorefin., 2011,5(1):69-92

    8. [8]

      [8] Deshmane V G, Adewuyi Y G. Appl. Catal. A:Gen., 2013, 462:196-206

    9. [9]

      [9] Chen H, Wang J F. Chin. J. Process Eng., 2006,6(4):571-575

    10. [10]

      [10] Jitputti J, Kitiyanan B, Rangsunvigit P, et al. Chem. Eng. J., 2006,116(1):61-66

    11. [11]

      [11] Rattanaphra D, Harvey A. Top Catal., 2010,53(11/12):773-782

    12. [12]

      [12] Garcia C M, Teixeira S, Marciniuk L L, et al. Bioresour. Technol., 2008,99(14):6608-6613

    13. [13]

      [13] ZHANG Qi(张琪), ZHANG Ji-Long(张继龙), WANG Hui-Gang(王会刚), et al. Mod. Chem. Ind.(现代化工), 2013,33(8):134-138

    14. [14]

      [14] Zhang Q Q, Ming W X, Ma J H, et al. J. Mater. Chem. A, 2014,2(23):8712-8718

    15. [15]

      [15] Cristian D M M, Alfonso E R S, et al. J. Mol. Catal. A:Chem., 2015,398:325-335

    16. [16]

      [16] Boskovic G C, Zarubica A R, et al. J. Therm. Anal. Calorim., 2008,91:849-854

    17. [17]

      [17] Patel A, Brahmkhatri V, Singh N. Renewable Energ., 2013, 51:227-233

    18. [18]

      [18] Liao Y, Huang X, Liao X P, et al. J. Mol. Catal. A:Chem., 2011,347(1):46-51

    19. [19]

      [19] Yuan Q, Li L L, Lu S L, et al. J. Phys. Chem. C, 2009,113(10):4117-4124

    20. [20]

      [20] Yue Z, Wong W T, Yung K F. Appl. Energy, 2014,116(3): 191-198

    21. [21]

      [21] Ivanov V K, Baranchikov A Y, et al. J. Solid State Chem., 2013,198(2):496-505

    22. [22]

      [22] Velasquez-Orta S B, Lee J G M, Harvey A P. Biochem. Eng. J., 2013,76:83-89

    23. [23]

      [23] Fu B, Gao L, Lei N, et al. Energy Fuels, 2009,23(1):569-572

    24. [24]

      [24] Furuta S, Matsuhashi H, Arata K. Catal. Commun., 2004,5(12):721-723

    25. [25]

      [25] Shu Q, Song Q, Yang B, et al. Catal. Commun., 2007,8(12): 2159-2165

    26. [26]

      [26] Suwannakarn K, Lotero E, Goodwin J G, et al. J. Catal., 2008,255(2):279-286

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    3. [3]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(9)
  • Abstract views(428)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return