Citation: WANG Hui-Gang, ZHANG Qi, ZHANG Ji-Long, YU Feng, LI Rui-Feng. Nano Sulfated Zirconia Synthesis and Its Catalytic Properties in the Transesterification[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1959-1964. doi: 10.11862/CJIC.2016.264 shu

Nano Sulfated Zirconia Synthesis and Its Catalytic Properties in the Transesterification

  • Corresponding author: YU Feng, 
  • Received Date: 8 April 2016
    Available Online: 29 September 2016

    Fund Project:

  • Nano SO42-/ZrO2 solid acid catalysts were prepared by two-step crystallization-post impregnation method and their catalytic performance in the transesterification of vegetable oil with methanol was investigated. The results of XRD, N2 adsorption-desorption and TEM showed that the single tetragonal phase catalyst calcined at 600℃ was composed of nano crystals about 5~10 nm and had the specific surface area of 137 m2·g-1 and the pore size of 3.7 nm. NH3-TPD data indicated that the calcination temperature could improve the content and intensity of the surface acid, and that more superacid content was favorable to effect the efficient conversion under general conditions. In the transesterification reaction, under the operating conditions of 5%(w/w) of catalyst calcined at 600℃, the molar ratio of methanol to oil 20:1, at 135℃ and for 6 h, vegetable oil could be completely converted to fatty acid methyl esters. Compared with the traditional SO42-/ZrO2 catalyst, the nano SO42-/ZrO2 catalyst had a higher catalytic performance and good reuse at low reaction temperature.
  • 加载中
    1. [1]

      [1] Talebian-Kiakalaieh A, Amin N A S, Mazaheri H. Appl. Energy, 2013,104(2):683-710

    2. [2]

      [2] Helwani Z, Othman M R, Aziz N, et al. Appl. Catal. A:Gen., 2009,363(1):1-10

    3. [3]

      [3] Lam M K, Lee K T, Mohamed A R. Biotechnol. Adv., 2010, 28(4):500-518

    4. [4]

      [4] YU Hui(于荟), ZHU Yin-hua(朱银华), LIU Chang(刘畅), et al. Chin. J. Catal.(催化学报), 2009,30(3):265-271

    5. [5]

      [5] Reddy B M, Patil M K. Chem. Rev., 2009,109(6):2185-2208

    6. [6]

      [6] Saravanan K, Tyagi B, Shukla R S, et al. Appl. Catal. B: Environ., 2015,172-173:108-115

    7. [7]

      [7] Sharma Y C, Singh B, Korstad J. Biofuel Bioprod. Biorefin., 2011,5(1):69-92

    8. [8]

      [8] Deshmane V G, Adewuyi Y G. Appl. Catal. A:Gen., 2013, 462:196-206

    9. [9]

      [9] Chen H, Wang J F. Chin. J. Process Eng., 2006,6(4):571-575

    10. [10]

      [10] Jitputti J, Kitiyanan B, Rangsunvigit P, et al. Chem. Eng. J., 2006,116(1):61-66

    11. [11]

      [11] Rattanaphra D, Harvey A. Top Catal., 2010,53(11/12):773-782

    12. [12]

      [12] Garcia C M, Teixeira S, Marciniuk L L, et al. Bioresour. Technol., 2008,99(14):6608-6613

    13. [13]

      [13] ZHANG Qi(张琪), ZHANG Ji-Long(张继龙), WANG Hui-Gang(王会刚), et al. Mod. Chem. Ind.(现代化工), 2013,33(8):134-138

    14. [14]

      [14] Zhang Q Q, Ming W X, Ma J H, et al. J. Mater. Chem. A, 2014,2(23):8712-8718

    15. [15]

      [15] Cristian D M M, Alfonso E R S, et al. J. Mol. Catal. A:Chem., 2015,398:325-335

    16. [16]

      [16] Boskovic G C, Zarubica A R, et al. J. Therm. Anal. Calorim., 2008,91:849-854

    17. [17]

      [17] Patel A, Brahmkhatri V, Singh N. Renewable Energ., 2013, 51:227-233

    18. [18]

      [18] Liao Y, Huang X, Liao X P, et al. J. Mol. Catal. A:Chem., 2011,347(1):46-51

    19. [19]

      [19] Yuan Q, Li L L, Lu S L, et al. J. Phys. Chem. C, 2009,113(10):4117-4124

    20. [20]

      [20] Yue Z, Wong W T, Yung K F. Appl. Energy, 2014,116(3): 191-198

    21. [21]

      [21] Ivanov V K, Baranchikov A Y, et al. J. Solid State Chem., 2013,198(2):496-505

    22. [22]

      [22] Velasquez-Orta S B, Lee J G M, Harvey A P. Biochem. Eng. J., 2013,76:83-89

    23. [23]

      [23] Fu B, Gao L, Lei N, et al. Energy Fuels, 2009,23(1):569-572

    24. [24]

      [24] Furuta S, Matsuhashi H, Arata K. Catal. Commun., 2004,5(12):721-723

    25. [25]

      [25] Shu Q, Song Q, Yang B, et al. Catal. Commun., 2007,8(12): 2159-2165

    26. [26]

      [26] Suwannakarn K, Lotero E, Goodwin J G, et al. J. Catal., 2008,255(2):279-286

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    3. [3]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    7. [7]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    8. [8]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    14. [14]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    19. [19]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(9)
  • Abstract views(534)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return