Citation: DONG Ke-Ke, YANG Xue-Yu, ZHAO Teng-Teng, ZHU Xiao-Lei. Exploring the Selectivity of Tetrahydropyrido[1,2-a]isoindolone Derivatives to GSK3β and CDK5 by Computational Methods[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1919-1930. doi: 10.11862/CJIC.2016.263 shu

Exploring the Selectivity of Tetrahydropyrido[1,2-a]isoindolone Derivatives to GSK3β and CDK5 by Computational Methods

  • Corresponding author: ZHU Xiao-Lei, 
  • Received Date: 11 May 2016
    Available Online: 12 September 2016

    Fund Project:

  • Tetrahydropyrido[1,2-a]isoindolone derivatives are potent inhibitors of glycogen synthase kinase 3β (GSK3β) instead of homologous cyclin-dependent kinase 5 (CDK5). Molecular docking, molecular dynamics simulation, and MM/PBSA energy calculation are utilized to reveal the kinase inhibitors' selective mechanism at the molecular level for improving selectivity. Dynamic cross-correlation map (DCCM) analysis is applied to study the effect of the inhibitor on the interactions between each residue in CDK5 and GSK3β. The results of molecular docking indicate that the binding modes of three inhibitors with two kinases are especially similar, and residues in the binding pockets of two kinases are aligned with each other based on the sequence comparing analysis of crystal structures. The analysis of Root Mean Square Deviation (RMSD) with little fluctuation underlies the stability and reliability of systems. Its values of CDK5 (~0.15 nm) are less than GSK3β (~0.17 nm), and the inhibitor with higher value holds stronger flexibility and conformational changes of kinases. In terms of energies, the electrostatic and van der Walls energies are the major interactions for differentiating the activity between the same inhibitor and two kinases. And the polar solvation energy plays pivotal role in discriminating the selectivity of kinase inhibitor. The residue decomposition indicates that the residues Glu97 and Thr138 of GSK3β are the key residues for differentiating the inhibitor selectivity. On the other hand, in the aspect of inter-residue interaction in one kinase, results indicate that the dynamic correlation of residues is different during the binding process of CDK5 and GSK3β with inhibitors. The correlation of Thr138 in the hinge domain of GSK3β with that of residues Val135~Gln206 is positive, while the correlation of Gln85 and Cys83~Ala150 in CDK5 is unclear, which is a key factor to distinguish inhibitor selectivity.
  • 加载中
    1. [1]

      [1] Frame S, Cohen P. Biochem. J., 2001,359:1-16

    2. [2]

      [2] Nurse P, Masui Y, Hartwell L. Nat. Med., 1998,4:1103-1106

    3. [3]

      [3] Sherr C J. Science, 1996,274:1672-1677

    4. [4]

      [4] Hunt T. Biosci. Rep., 2002,22:465-486

    5. [5]

      [5] Li X, Lu F, Tian Q, et al. J. Neural Transm., 2005,113:93-102

    6. [6]

      [6] Vougolkov A, Dbilladeau D. Future Oncol., 2006,2:91-100

    7. [7]

      [7] Mondragon-Rodriguez S, Perry G, Zhu X, et al. Int. J. Alzheimer's Dis., 2012,2012:1-4

    8. [8]

      [8] Rix L L, Kuenzi B M, Luo Y, et al. ACS Chem. Biol., 2014,9: 353-358

    9. [9]

      [9] Fang X, Yu S X, Lu Y, et al. PNAS, 2000,97:11960-11965

    10. [10]

      [10] Goedert M, Spillantini M G, Crowther R A. Brain Pathol., 1991,1:279-286

    11. [11]

      [11] Leroy K, Boutajangout A, Authelet M, et al. Acta Neuropathol., 2002,103:91-99

    12. [12]

      [12] Bradley C A, Peineau S, Taghibiglou C, et al. Front. Mol. Neurosci., 2012,5:1-11

    13. [13]

      [13] Rudenko A, Seo J, Hu J, et al. J. Neurosci., 2015,35:2372-2383

    14. [14]

      [14] Engmann O, Giese K P. Front. Mol. Neurosci., 2009,2:1-5

    15. [15]

      [15] Leclerc S, Garnier M, Hoessel R, et al. J. Biol. Chem., 2001, 276:251-260

    16. [16]

      [16] Mettey Y, Gompel M, Thomas V, et al. J. Med. Chem., 2003, 46:222-236

    17. [17]

      [17] Tnguyen T, Jtepe J. Curr. Med. Chem., 2009,16:3122-3143

    18. [18]

      [18] Crunkhorn S. Nat. Rev. Drug Discovery, 2015,14:457-457

    19. [19]

      [19] Berg S, Bergh M, Hellberg S, et al. J. Med. Chem., 2012,55: 9107-9119

    20. [20]

      [20] Chen Q, Cui W, Cheng Y, et al. J. Mol. Model., 2011,17: 795-803

    21. [21]

      [21] Boulahjar R, Ouach A, Matteo C, et al. J. Med. Chem., 2012, 55:9589-9606

    22. [22]

      [22] Ouach A, Boulahjar R, Vala C, et al. Eur. J. Med. Chem., 2016,115:311-325

    23. [23]

      [23] Dessalew N, Bharatam P V. Eur. J. Med. Chem., 2007,42: 1014-1027

    24. [24]

      [24] Larkin M, Blackshields G, Brown N P, et al. Bioinformatics, 2007,23:2947-2948

    25. [25]

      [25] Case D A, Cheatham T A, Simmerling C L. AMBER 10, University of California. San Francisco:San Francisco, CA, 2008.

    26. [26]

      [26] Bayly C I, Cieplak P, Cornell W D, et al. J. Phys. Chem., 1993,97:10269-10280

    27. [27]

      [27] Cieplak P, Cornell W D, Bayly C, et al. J. Comput. Chem., 1995,16:1357-1377

    28. [28]

      [28] Fox T, Kollman P A. J. Phys. Chem. B, 1998,102:8070-8079

    29. [29]

      [29] Mapelli M, Massimilinao L, Crovace C. J. Med. Chem., 2005,48:671-679

    30. [30]

      [30] Shin D, Lee S C, Heo Y S, et al. Bioorg. Med. Chem. Lett., 2007,17:5686-5689

    31. [31]

      [31] Zhao P, Li Y, Gao G, et al. Eur. J. Med. Chem., 2014,86: 165-174

    32. [32]

      [31] Wu Q, Kang H, Tian C, et al. Mol. Inf., 2013,32:251-260

    33. [33]

      [33] Aixiao L, Florent B, Franois M, et al. J. Mol. Struct. THEOCHEM, 2008,849:62-75

    34. [34]

      [34] Wang J, Wolf R M, Caldwell J W, et al. J. Comput. Chem., 2004,25:1157-1174

    35. [35]

      [35] Cornell W D, Cieplak P, Bayly C I, et al. J. Am. Chem. Soc., 1995,117:5179-519

    36. [36]

      [36] Shiekhattar R, Mermelstein F H, Fisher R P, et al. Nature, 1995,374:283-287

    37. [37]

      [37] Ryckaert J, Ciccotti G, Cberendsen H. J. Comput. Phys., 1977,23:327-341

    38. [38]

      [38] Darden T, Myork D, Gpedersen L. J. Chem. Phys., 1993,98: 10089-10092

    39. [39]

      [39] Hou T, Wang J, Li Y, et al. J. Chem. Inf. Model., 2011,51: 69-82

    40. [40]

      [40] Andricioaei I, Karplus M. J. Chem. Phys., 2001,115:6289-6292

    41. [41]

      [41] Gu Y, Wang W, Zhu X, et al. J. Mol. Model., 2014,20:1-12

    42. [42]

      [42] Andricioaei I, Karplus M. J. Chem. Phys., 2001,115:6289-6292

    43. [43]

      [43] Wang W, Cao X, Zhu X, et al. J. Mol. Model., 2013,19: 2635-2645

    44. [44]

      [44] Sa R, Fang L, Huang M, et al. J. Phys. Chem. A, 2014,118: 9113-9119

    45. [45]

      [45] Li C, Ma N, Wang Y, et al. J. Phys. Chem. B, 2014,118: 1273-1287

    46. [46]

      [46] Ichiye T, Karplus M. Proteins, 1991,11:205-217

    47. [47]

      [47] Schrodinger LLC. PyMOL Molecular Graphics System, Version 1.8, 2015.

    48. [48]

      [48] Pradeep H, Rajanikant G K. Mol. Diversity, 2012,16:553-562

    49. [49]

      [49] Dajani R, Fraser E, Roe S M, et al. Cell, 2001,105:721-732

    50. [50]

      [50] Dajani R, Fraser E, Roe S M. EMBO J., 2003,22:494-501

    51. [51]

      [51] Lobanov M Y, Bogatyreva N S, Galzitskaya O V. Mol. Biol., 2008,42:623-628

    52. [52]

      [52] ZHANG Chuan(张川), ZHANG Lu-Jia(张鲁嘉), ZHANG Yang(张洋), et al. Acta Chim. Sinica(化学学报), 2016,74: 74-80

    53. [53]

      [53] Otyepka M, Bartova I, Kriz Z, et al. J. Biol. Chem., 2006, 281:7271-7281

    54. [54]

      [54] Safi M, Lilien R H. J. Chem. Inf. Model., 2012,52:1529-1541

    55. [55]

      [55] Zhan D, Yu L, Jin H, et al. Int. J. Mol. Sci., 2014,15:17284-17303

    56. [56]

      [56] Laskowski R A, Swindells M B. J. Chem. Inf. Model., 2011, 51:2778-2786

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    3. [3]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    16. [16]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(1)
  • Abstract views(244)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return