Citation: LI Meng-Yun, FU Ting-Jun, WANG Yu-Chun, YAN Li-Fei, LI Zhong. Influence of H+ Contents of Support on CuY Catalyst for Catalytic Performances of Oxidative Carbonylation of Methanol[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1951-1958. doi: 10.11862/CJIC.2016.258 shu

Influence of H+ Contents of Support on CuY Catalyst for Catalytic Performances of Oxidative Carbonylation of Methanol

  • Corresponding author: LI Zhong, 
  • Received Date: 5 March 2016
    Available Online: 30 August 2016

    Fund Project:

  • A series of Y zeolite supported Cu catalysts (CuY) with Cu loading of 6.4% were prepared by wet impregnation method and investigated in oxidative carbonylation of methanol. The microstructure and surface properties of the catalysts were characterized by X-ray diffraction (XRD), H2-temperature program reduction (H2-TPR), NH3-temperature program desorption (NH3-TPD), transmission electron microscope(TEM) techniques. With the increase of H+ content, the Y zeolite supports were more conductive to the cation exchangment with Cu2+, leading to well dispersed Cu species in cages. Above all, the non-exchanged Na+ of Y zeolite resulted in more Cu species located in the super cages. After calcination, the copper species converted into Cu+, which enhanced the catalytic activity of oxidative carbonylation of methanol. The introduction of Cu species into Y zeolite produced moderate acid sites and the amount of acid was also increased with the increase of Cu species located in the cages, As a result, the reaction product distribution varied and the selectivity of DMC decreased with the increase of H+ content. The CuY catalyst prepared by incipient-wetness impregnation method gave 92.3% selectivity of DMC, whereas the Cu catalyst supported on NaY zeolite by wet impregnation method gave 82.4% selectivity of DMC and high space-time yield (STY) of DMC, 109.1 mg·g-1·h-1.
  • 加载中
    1. [1]

      [1] Huang S Y, Yan B, Wang S P, et al. Chem. Soc. Rev., 2015, 44(10):3079-3116

    2. [2]

      [2] Zheng H Y, Qi J, Zhang R G, et al. Fuel Process Technol, 2014,128:310-318

    3. [3]

      [3] Delledonne D, Rivetti F, Romano U. Appl. Catal. A:Gen., 2001,221(1):241-251

    4. [4]

      [4] Ren J, Liu S S, Li Z, et al. Catal. Commun., 2011,12(5):357-361

    5. [5]

      [5] Zhang P B, Huang S Y, Yang Y, et al. Catal. Today, 2010, 149(1/2):202-206

    6. [6]

      [6] Zheng H Y, Ren J, Zhou Y, et al. J. Fuel Chem. Technol., 2011,39(4):282-286

    7. [7]

      [7] King S T. J. Catal., 1996,161(2):530-538

    8. [8]

      [8] King S T. Catal. Today, 1997,33(1):173-182

    9. [9]

      [9] Zhang Y, Briggs D N, Smit de E, et al. J. Catal., 2007,251(2):443-452

    10. [10]

      [10] Nam J K, Choi M J, Cho D H, et al. J. Mol. Catal. A: Chem., 2013,370:7-13

    11. [11]

      [11] Engeldinger J, Domke C, Richter M, et al. Appl. Catal. A: Gen., 2010,382(2):303-311

    12. [12]

      [12] Richter M, Fait M, Eckelt R, et al. Appl. Catal. B: Environ., 2007,73(3):269-281

    13. [13]

      [13] Richter M, Fait M, Eckelt R, et al. J. Catal., 2007,245(1): 11-24

    14. [14]

      [14] LI Zhong(李忠), FU Ting-Jun(付廷俊), ZHENG Hua-Yan (郑华艳). Chinese J. Inorg. Chem. (无机化学学报), 2011, 27(08):1483-1490

    15. [15]

      [15] WANG Rui-Yu(王瑞玉), LI Zhong(李忠), ZHENG Hua-Yan (郑华艳), et al. Chin. J. Catal. (催化学报), 2009,30(10): 1068-1072

    16. [16]

      [16] FU Ting-Jun(付廷俊), ZHENG Hua-Yan(郑华艳), NIU Yan-Yan(牛燕燕), et al. Chin. J. Chem. (化学学报), 2011,69(15):1765-1772

    17. [17]

      [17] WANG Yu-Chun(王玉春), ZHENG Hua-Yan(郑华艳), LIU Bin(刘斌), et al. Chem. J. Chinese U. miversities (高等学校化学学报), 2015,36(12):2540-2549

    18. [18]

      [18] Berthomieu D, Delahay G. Catal. Rev., 2006,48(3):269-313

    19. [19]

      [19] XU Shu-Tao(徐舒涛), ZHANG Wei-Ping(张维萍), HAN Xiu-Wen(韩秀文), et al. Chin. J. Catal. (催化学报), 2009, 30(9):945-950

    20. [20]

      [20] Kieger S, Delahay G, Coq B. Appl. Catal. B:Environ., 2000,25(1):1-9

    21. [21]

      [21] Gentry S J, Hurst N W, Jones A. J. Chem. Soc. Faraday Trans., 1979,75:1688-1699

    22. [22]

      [22] Zhang Y H, Bell A T. J. Catal., 2008,255(2):153-161

    23. [23]

      [23] Li Z, Wang R Y, Zheng H Y, et al. Fuel, 2010,89(7):1339-1343

    24. [24]

      [24] FAN Min-Guang(范闽光), FANG Jin-Long(方金龙), ZHOU Long-Chang(周龙昌), et al. Chem. J. Chinese Universities (高等学校化学学报), 2008,29(9):1834-1840

    25. [25]

      [25] Berthomieu D, Krishnamurty S, Coq B, et al. J. Phys. Chem. B, 2001,105(6):1149-1156

    26. [26]

      [26] Fei J H, Hou Z Y, Bing Z, et al. Appl. Catal. A:Gen., 2006,304(1):49-54

  • 加载中
    1. [1]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    7. [7]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    8. [8]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    9. [9]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-0. doi: 10.3866/PKU.WHXB202406012

    10. [10]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    11. [11]

      Ze LuoYukun ZhuYadan LuoGuangmin RenYonghong WangHua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166

    12. [12]

      Zhen LiSujuan ZhangZhongliao WangJinfeng ZhangGaoli ChenShifu Chen . Rational design of S-scheme CdS/MnO2 heterojunctions for high-value photothermal synergistic catalytic oxidation of toluene. Acta Physico-Chimica Sinica, 2026, 42(4): 100179-0. doi: 10.1016/j.actphy.2025.100179

    13. [13]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    17. [17]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    19. [19]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    20. [20]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

Metrics
  • PDF Downloads(0)
  • Abstract views(866)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return