Citation: LI Meng-Yun, FU Ting-Jun, WANG Yu-Chun, YAN Li-Fei, LI Zhong. Influence of H+ Contents of Support on CuY Catalyst for Catalytic Performances of Oxidative Carbonylation of Methanol[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1951-1958. doi: 10.11862/CJIC.2016.258 shu

Influence of H+ Contents of Support on CuY Catalyst for Catalytic Performances of Oxidative Carbonylation of Methanol

  • Corresponding author: LI Zhong, 
  • Received Date: 5 March 2016
    Available Online: 30 August 2016

    Fund Project:

  • A series of Y zeolite supported Cu catalysts (CuY) with Cu loading of 6.4% were prepared by wet impregnation method and investigated in oxidative carbonylation of methanol. The microstructure and surface properties of the catalysts were characterized by X-ray diffraction (XRD), H2-temperature program reduction (H2-TPR), NH3-temperature program desorption (NH3-TPD), transmission electron microscope(TEM) techniques. With the increase of H+ content, the Y zeolite supports were more conductive to the cation exchangment with Cu2+, leading to well dispersed Cu species in cages. Above all, the non-exchanged Na+ of Y zeolite resulted in more Cu species located in the super cages. After calcination, the copper species converted into Cu+, which enhanced the catalytic activity of oxidative carbonylation of methanol. The introduction of Cu species into Y zeolite produced moderate acid sites and the amount of acid was also increased with the increase of Cu species located in the cages, As a result, the reaction product distribution varied and the selectivity of DMC decreased with the increase of H+ content. The CuY catalyst prepared by incipient-wetness impregnation method gave 92.3% selectivity of DMC, whereas the Cu catalyst supported on NaY zeolite by wet impregnation method gave 82.4% selectivity of DMC and high space-time yield (STY) of DMC, 109.1 mg·g-1·h-1.
  • 加载中
    1. [1]

      [1] Huang S Y, Yan B, Wang S P, et al. Chem. Soc. Rev., 2015, 44(10):3079-3116

    2. [2]

      [2] Zheng H Y, Qi J, Zhang R G, et al. Fuel Process Technol, 2014,128:310-318

    3. [3]

      [3] Delledonne D, Rivetti F, Romano U. Appl. Catal. A:Gen., 2001,221(1):241-251

    4. [4]

      [4] Ren J, Liu S S, Li Z, et al. Catal. Commun., 2011,12(5):357-361

    5. [5]

      [5] Zhang P B, Huang S Y, Yang Y, et al. Catal. Today, 2010, 149(1/2):202-206

    6. [6]

      [6] Zheng H Y, Ren J, Zhou Y, et al. J. Fuel Chem. Technol., 2011,39(4):282-286

    7. [7]

      [7] King S T. J. Catal., 1996,161(2):530-538

    8. [8]

      [8] King S T. Catal. Today, 1997,33(1):173-182

    9. [9]

      [9] Zhang Y, Briggs D N, Smit de E, et al. J. Catal., 2007,251(2):443-452

    10. [10]

      [10] Nam J K, Choi M J, Cho D H, et al. J. Mol. Catal. A: Chem., 2013,370:7-13

    11. [11]

      [11] Engeldinger J, Domke C, Richter M, et al. Appl. Catal. A: Gen., 2010,382(2):303-311

    12. [12]

      [12] Richter M, Fait M, Eckelt R, et al. Appl. Catal. B: Environ., 2007,73(3):269-281

    13. [13]

      [13] Richter M, Fait M, Eckelt R, et al. J. Catal., 2007,245(1): 11-24

    14. [14]

      [14] LI Zhong(李忠), FU Ting-Jun(付廷俊), ZHENG Hua-Yan (郑华艳). Chinese J. Inorg. Chem. (无机化学学报), 2011, 27(08):1483-1490

    15. [15]

      [15] WANG Rui-Yu(王瑞玉), LI Zhong(李忠), ZHENG Hua-Yan (郑华艳), et al. Chin. J. Catal. (催化学报), 2009,30(10): 1068-1072

    16. [16]

      [16] FU Ting-Jun(付廷俊), ZHENG Hua-Yan(郑华艳), NIU Yan-Yan(牛燕燕), et al. Chin. J. Chem. (化学学报), 2011,69(15):1765-1772

    17. [17]

      [17] WANG Yu-Chun(王玉春), ZHENG Hua-Yan(郑华艳), LIU Bin(刘斌), et al. Chem. J. Chinese U. miversities (高等学校化学学报), 2015,36(12):2540-2549

    18. [18]

      [18] Berthomieu D, Delahay G. Catal. Rev., 2006,48(3):269-313

    19. [19]

      [19] XU Shu-Tao(徐舒涛), ZHANG Wei-Ping(张维萍), HAN Xiu-Wen(韩秀文), et al. Chin. J. Catal. (催化学报), 2009, 30(9):945-950

    20. [20]

      [20] Kieger S, Delahay G, Coq B. Appl. Catal. B:Environ., 2000,25(1):1-9

    21. [21]

      [21] Gentry S J, Hurst N W, Jones A. J. Chem. Soc. Faraday Trans., 1979,75:1688-1699

    22. [22]

      [22] Zhang Y H, Bell A T. J. Catal., 2008,255(2):153-161

    23. [23]

      [23] Li Z, Wang R Y, Zheng H Y, et al. Fuel, 2010,89(7):1339-1343

    24. [24]

      [24] FAN Min-Guang(范闽光), FANG Jin-Long(方金龙), ZHOU Long-Chang(周龙昌), et al. Chem. J. Chinese Universities (高等学校化学学报), 2008,29(9):1834-1840

    25. [25]

      [25] Berthomieu D, Krishnamurty S, Coq B, et al. J. Phys. Chem. B, 2001,105(6):1149-1156

    26. [26]

      [26] Fei J H, Hou Z Y, Bing Z, et al. Appl. Catal. A:Gen., 2006,304(1):49-54

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    12. [12]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(0)
  • Abstract views(360)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return