Citation:
LI Meng-Yun, FU Ting-Jun, WANG Yu-Chun, YAN Li-Fei, LI Zhong. Influence of H+ Contents of Support on CuY Catalyst for Catalytic Performances of Oxidative Carbonylation of Methanol[J]. Chinese Journal of Inorganic Chemistry,
;2016, 32(11): 1951-1958.
doi:
10.11862/CJIC.2016.258
-
A series of Y zeolite supported Cu catalysts (CuY) with Cu loading of 6.4% were prepared by wet impregnation method and investigated in oxidative carbonylation of methanol. The microstructure and surface properties of the catalysts were characterized by X-ray diffraction (XRD), H2-temperature program reduction (H2-TPR), NH3-temperature program desorption (NH3-TPD), transmission electron microscope(TEM) techniques. With the increase of H+ content, the Y zeolite supports were more conductive to the cation exchangment with Cu2+, leading to well dispersed Cu species in cages. Above all, the non-exchanged Na+ of Y zeolite resulted in more Cu species located in the super cages. After calcination, the copper species converted into Cu+, which enhanced the catalytic activity of oxidative carbonylation of methanol. The introduction of Cu species into Y zeolite produced moderate acid sites and the amount of acid was also increased with the increase of Cu species located in the cages, As a result, the reaction product distribution varied and the selectivity of DMC decreased with the increase of H+ content. The CuY catalyst prepared by incipient-wetness impregnation method gave 92.3% selectivity of DMC, whereas the Cu catalyst supported on NaY zeolite by wet impregnation method gave 82.4% selectivity of DMC and high space-time yield (STY) of DMC, 109.1 mg·g-1·h-1.
-
-
-
[1]
[1] Huang S Y, Yan B, Wang S P, et al. Chem. Soc. Rev., 2015, 44(10):3079-3116
-
[2]
[2] Zheng H Y, Qi J, Zhang R G, et al. Fuel Process Technol, 2014,128:310-318
-
[3]
[3] Delledonne D, Rivetti F, Romano U. Appl. Catal. A:Gen., 2001,221(1):241-251
-
[4]
[4] Ren J, Liu S S, Li Z, et al. Catal. Commun., 2011,12(5):357-361
-
[5]
[5] Zhang P B, Huang S Y, Yang Y, et al. Catal. Today, 2010, 149(1/2):202-206
-
[6]
[6] Zheng H Y, Ren J, Zhou Y, et al. J. Fuel Chem. Technol., 2011,39(4):282-286
-
[7]
[7] King S T. J. Catal., 1996,161(2):530-538
-
[8]
[8] King S T. Catal. Today, 1997,33(1):173-182
-
[9]
[9] Zhang Y, Briggs D N, Smit de E, et al. J. Catal., 2007,251(2):443-452
-
[10]
[10] Nam J K, Choi M J, Cho D H, et al. J. Mol. Catal. A: Chem., 2013,370:7-13
-
[11]
[11] Engeldinger J, Domke C, Richter M, et al. Appl. Catal. A: Gen., 2010,382(2):303-311
-
[12]
[12] Richter M, Fait M, Eckelt R, et al. Appl. Catal. B: Environ., 2007,73(3):269-281
-
[13]
[13] Richter M, Fait M, Eckelt R, et al. J. Catal., 2007,245(1): 11-24
-
[14]
[14] LI Zhong(李忠), FU Ting-Jun(付廷俊), ZHENG Hua-Yan (郑华艳). Chinese J. Inorg. Chem. (无机化学学报), 2011, 27(08):1483-1490
-
[15]
[15] WANG Rui-Yu(王瑞玉), LI Zhong(李忠), ZHENG Hua-Yan (郑华艳), et al. Chin. J. Catal. (催化学报), 2009,30(10): 1068-1072
-
[16]
[16] FU Ting-Jun(付廷俊), ZHENG Hua-Yan(郑华艳), NIU Yan-Yan(牛燕燕), et al. Chin. J. Chem. (化学学报), 2011,69(15):1765-1772
-
[17]
[17] WANG Yu-Chun(王玉春), ZHENG Hua-Yan(郑华艳), LIU Bin(刘斌), et al. Chem. J. Chinese U. miversities (高等学校化学学报), 2015,36(12):2540-2549
-
[18]
[18] Berthomieu D, Delahay G. Catal. Rev., 2006,48(3):269-313
-
[19]
[19] XU Shu-Tao(徐舒涛), ZHANG Wei-Ping(张维萍), HAN Xiu-Wen(韩秀文), et al. Chin. J. Catal. (催化学报), 2009, 30(9):945-950
-
[20]
[20] Kieger S, Delahay G, Coq B. Appl. Catal. B:Environ., 2000,25(1):1-9
-
[21]
[21] Gentry S J, Hurst N W, Jones A. J. Chem. Soc. Faraday Trans., 1979,75:1688-1699
-
[22]
[22] Zhang Y H, Bell A T. J. Catal., 2008,255(2):153-161
-
[23]
[23] Li Z, Wang R Y, Zheng H Y, et al. Fuel, 2010,89(7):1339-1343
-
[24]
[24] FAN Min-Guang(范闽光), FANG Jin-Long(方金龙), ZHOU Long-Chang(周龙昌), et al. Chem. J. Chinese Universities (高等学校化学学报), 2008,29(9):1834-1840
-
[25]
[25] Berthomieu D, Krishnamurty S, Coq B, et al. J. Phys. Chem. B, 2001,105(6):1149-1156
-
[26]
[26] Fei J H, Hou Z Y, Bing Z, et al. Appl. Catal. A:Gen., 2006,304(1):49-54
-
[1]
-
-
-
[1]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[2]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[3]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[4]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[5]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[6]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[7]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[8]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[9]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[10]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[11]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[12]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[13]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[14]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[15]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[16]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[17]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[18]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[19]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[20]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(462)
- HTML views(56)