Citation: LI Xiao-Fen, CHEN Meng-Ying, LIANG Shi-Jing, LI Xiao-Juan, BI Jin-Hong. Preparation and Photocatalytic Performance of Ag Nanoparticles Loaded CdMoO4 Photocatalyst[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1987-1994. doi: 10.11862/CJIC.2016.257 shu

Preparation and Photocatalytic Performance of Ag Nanoparticles Loaded CdMoO4 Photocatalyst

  • Corresponding author: BI Jin-Hong, 
  • Received Date: 3 June 2016
    Available Online: 19 October 2016

    Fund Project:

  • Ag nanoparticles loaded CdMoO4 photocatalysts were prepared via a hydrothermal process followed by the sodium borohydride reduction method. The composition and structure of the catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. The photo-response and surface state of the catalysts were investigated by UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and X-ray photoelectron spectroscopy (XPS). The effect of the loaded amount of Ag nanoparticles on the photocatalytic activity of CdMoO4 photocatalyst for the degradation of rhodamine B (RhB) under UV light and the selective oxidation of benzyl alcohol under visible light were investigated. The results showed that the composite photocatalysts exhibited significantly enhanced photocatalytic activity compared to pure CdMoO4. The mechanism was studied by employing chemical scavengers technology, which indicated that O2-·and·OH are the main species in the photocatalytic process.
  • 加载中
    1. [1]

      [1] Jiang X H, Ma J F, Cheng J, et al. Adv. Mater., 2012,472: 2452-2457

    2. [2]

      [2] Sato S. Chem. Phys. Lett., 1986,123(1):126-128

    3. [3]

      [3] YANG Wen-Qing (杨文庆). Mater. Prot.(材料保护), 1995, 28(8):16-19

    4. [4]

      [4] Phuruangrat A, Thongtem T, Thongtem S. J. Phys. Chem. Solids, 2009,70(6):955-959

    5. [5]

      [5] Wu X, Du J, Li H, et al. J. Solid State Chem., 2007,180(11): 3288-3295

    6. [6]

      [6] Mikhailik V B, Kraus H, Wahl D, et al. Phys. Status Solidi B, 2005,242(2):R17-R19

    7. [7]

      [7] Jayaraman A, Wang S Y, Sharma S K. Phys. Rev. B, 1995, 52(14):9886-9889

    8. [8]

      [8] Beckmann P A, Bai S, Dybowski C. Phys. Rev. B, 2005,71(1):012410

    9. [9]

      [9] Zhen L, Wang W S, Xu C Y, et al. Scr. Mater., 2008,58(6): 461-464

    10. [10]

      [10] Liu H, Tan L. Ionics, 2010,16(1):57-60

    11. [11]

      [11] Zhou L, Wang W, Xu H, et al. Cryst. Growth Des., 2008,8(10):3595-3601

    12. [12]

      [12] Gong Q, Li G, Qian X, et al. J. Colloid Interface Sci., 2006, 304(2):408-412

    13. [13]

      [13] Wang W S, Zhen L, Xu C Y, et al. Cryst. Growth Des., 2009,9(3):1558-1568

    14. [14]

      [14] Zhao L, Zhang L, Lin H, et al. J. Hazard. Mater., 2015,299: 333-342

    15. [15]

      [15] Bi J H, Zhou Z Y, Chen M Y, et al. Appl. Surf. Sci., 2015, 349:292-298

    16. [16]

      [16] Xu J, Wu M, Chen M, et al. Powder Technol., 2015,281: 167-172

    17. [17]

      [17] HAN Jing(韩婧), SHI Li-Yi(施利毅), CHENG Rong-Ming (成荣明), et al. Chinese J. Inorg. Chem.(无机化学学报), 2008,24(6):950-955

    18. [18]

      [18] Liu L, Lin S, Hu J, et al. Appl. Surf. Sci., 2015,330:94-103

    19. [19]

      [19] Liang Y, Lin S, Liu L, et al. Appl. Catal. B, 2015,164:192-203

    20. [20]

      [20] Liu L, Ding L, Liu Y, et al. Appl. Catal. B, 2017,201:92-104

    21. [21]

      [21] Liu L, Qi Y, Lu J, et al. Appl. Catal. B, 2016,183:133-141

    22. [22]

      [22] Sarina S, Waclawik E R, Zhu H. Green Chem., 2013,15(7): 1814-1833

    23. [23]

      [23] Zheng Z, Huang B, Qin X, et al. J. Mater. Chem., 2011,21(25):9079-9087

    24. [24]

      [24] Zhu H, Chen X, Zheng Z, et al. Chem. Commun., 2009(48): 7524-7526

    25. [25]

      [25] Xin B, Jing L, Ren Z, et al. J. Phys. Chem. B, 2005,109(7): 2805-2809

    26. [26]

      [26] Li H, Bian Z, Zhu J, et al. J. Am. Chem. Soc., 2007,129(15):4538-4539

    27. [27]

      [27] Yu J, Yue L, Liu S, et al. J. Colloid Interface Sci., 2009,334(1):58-64

    28. [28]

      [28] Thongtem T, Phuruangrat A, Thongtem S. Mater. Lett., 2008, 62(3):454-457

    29. [29]

      [29] Phuruangrat A, Thongtem T, Thongtem S. J. Alloys Compd., 2009,481(1):568-572

    30. [30]

      [30] Phuruangrat A, Thongtem T, Thongtem S. J. Cryst. Growth, 2009,311(16):4076-4081

    31. [31]

      [31] Zhu S, Liang S, Gu Q, et al. Appl. Catal. B:Enviro., 2012, 119:146-155

    32. [32]

      [32] Fang J, Cao S W, Wang Z, et al. Int. J. Hydrogen Energy, 2012,37(23):17853-17861

    33. [33]

      [33] Long J, Wang S, Ding Z, et al. Chem. Commun., 2012,48(95):11656-11658

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    3. [3]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(2)
  • Abstract views(356)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return