Citation: MENG Xian-Wei, YANG Hong-Wei, HU Chang-Yi, MAO Yong-Yun, YANG Yu-Wen, CHEN Jia-Lin, . Flower-like Silver Sphere Catalytic Material:Preparation and Catalytic Activity for the Hydrogenation Reduction of p-Nitrophenol[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1981-1986. doi: 10.11862/CJIC.2016.249 shu

Flower-like Silver Sphere Catalytic Material:Preparation and Catalytic Activity for the Hydrogenation Reduction of p-Nitrophenol

  • Corresponding author: YANG Hong-Wei, 
  • Received Date: 4 June 2016
    Available Online: 13 September 2016

    Fund Project:

  • The flower-like silver sphere structure has been rapidly synthesized by self-assembly of silver nanoflakes through one-step direct mixing of silver nitrate aqueous solution and an aqueous solution containing ferrous sulfate and citric acid. The influence of dropping speed of silver nitrate aqueous solution and the dosage of citric acid on the morphology and size of product were investigated in details through different characteristic methods including X-ray diffraction (XRD) and scanning electron microscopy (SEM). Furthermore, the possible formation mechanism of flower-like silver sphere was explored. The obtained experimental results indicated that the morphology of silver particles could transform from thin flake into flower-like sphere by simply adjusting the dropping speed of silver nitrate aqueous solution. Additionally, this type of nanomaterial exhibited superior catalytic activity for the hydrogenation reduction of p-nitrophenol.
  • 加载中
    1. [1]

      [1] Xia Y, Yang P, Sun Y, et al. Adv. Mater., 2003,34(22):353-389

    2. [2]

      [2] Hu L, Kim H S, Lee J Y, et al. ACS Nano, 2010,4(5):2955-2963

    3. [3]

      [3] Peng P, Huang H, Hu A, et al. J. Mater. Chem., 2012,22(26):12997-13001

    4. [4]

      [4] WEI Zhi-Qiang(魏志强), WEN Xian-Lun(温贤伦), WU Xian-Cheng(吴现成), et al. J. Lanzhou Univ.(兰州大学学报), 2003,39(5):38-40

    5. [5]

      [5] ZHANG Zhi-Kun(张志琨), CUI Zuo-Lin(崔作林). Nano Technology and Nano Materials(纳米技术与纳米材料). Beijing:National Defence Industry Press, 2000.

    6. [6]

      [6] PENG Zi-Fei(彭子飞), WANG Guo-Zhong(汪国忠), ZHANG Li-De(张立德), et al. J. Mater. Res.(材料研究学报), 1997,1(1):104-106

    7. [7]

      [7] SONG Yong-Hui(宋永辉), LIANG Gong-Ying(梁工英), ZHANG Qiu-Li(张秋利), et al. Rare Metal Mater. Eng.(稀有金属材料与工程), 2007,36(4):709-712

    8. [8]

      [8] Song Y H, Zhou J T, Lan X Z, et al. Adv. Mater. Res., 2011, 233-235:1911-1915

    9. [9]

      [9] Yun T L, Sang H I, Xia Y N, et al. Chem. Phys. Lett., 2005, 411(4/5/6):479-483

    10. [10]

      [11] Sun Y G, Xia Y N. Adv. Mater., 2002,14:833-837

    11. [11]

      [11] HE Hui(何辉), ZHOU Jia-Ting(周家霆), DONG Hong-Jian (董红建), et al. Gold(黄金), 2013,34(1):5-9

    12. [12]

      [12] ZHANG Bo(张波), ZHAO Ai-Wu(赵爱武), WANG Da-Peng (王大朋), et al. Chem. J. Chinese Universities(高等学校化学学报), 2010,31(8):1491-1495

    13. [13]

      [13] WU Hui-Jie(吴会杰), ZHANG Jin(张进), WANG Ming-Guang(王明光), et al. J. Chongqing Univ. Arts Sci.(重庆文理学院学报), 2015(2):14-17

    14. [14]

      [14] Saha S, Pal A, Kundu S, et al. Langmuir, 2010,26:2885-2893

    15. [15]

      [15] Liu W J, Sun D R, Fu J L, et al. RSC Adv., 2014,4:11003-11011

    16. [16]

      [16] Xiong R, Lu C H, Wang Y R, et al. J. Mater. Chem. A, 2013, 1:14910-14918

    17. [17]

      [17] Tang S, Vongehr S, Meng X. J. Phys. Chem. C, 2010,114: 977-982

    18. [18]

      [18] Mao Y Y, Wei J W, Wang C, et al. Mater. Lett., 2015,154(S01):47-50

    19. [19]

      [19] Rashid M H, Mandal T K. J. Phys. Chem. C, 2007,111(45): 16750-16760

    20. [20]

      [20] Chi Y, Yuan Q, Li Y, et al. J. Colloid Interface Sci., 2012, 383(1):96-102

    21. [21]

      [21] Chi Y, Tu J, Wang M, et al. J. Colloid Interface Sci., 2014, 423(3):54-59

    22. [22]

      [22] Shin K S, Cho Y K, Choi J Y, et al. Appl. Catal. A:Gen., 2012,413:170-175

    23. [23]

      [23] Baruah B, Gabriel G J, Akbashev M J, et al. Langmuir, 2013,29(13):4225-4234

    24. [24]

      [24] Gu S, Wang W, Tan F T, et al. Mater. Res. Bull., 2014,49(1):138-143

    25. [25]

      [25] Sun Y, Mayers A B, Xia Y. Nano Lett., 2003,3(5):675-679

    26. [26]

      [26] Qiao Z, Na L, James G, et al. J. Am. Chem. Soc., 2011,133(46):18931-18939

    27. [27]

      [27] TANG Hui(唐辉). Science & Technology Information(科技信息:学术版), 2006(10):35-36

    28. [28]

      [28] Yang Y W, Mao Y Y, Wang B, et al. RSC Adv., 2016,6(39): 32430-32433

  • 加载中
    1. [1]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    2. [2]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    3. [3]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    4. [4]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    5. [5]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    7. [7]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    8. [8]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    11. [11]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    12. [12]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    13. [13]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    14. [14]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    15. [15]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(0)
  • Abstract views(383)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return