Citation: LI Ai-Chang, SONG Min, ZHAO Sha-Sha, GUO Ying-Jie. Photoelectrocatalytic Property and Reaction Mechanism of Ag@AgBr/Ni Thin Films at Negative Bias for Rhodamine B[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(9): 1543-1551. doi: 10.11862/CJIC.2016.205 shu

Photoelectrocatalytic Property and Reaction Mechanism of Ag@AgBr/Ni Thin Films at Negative Bias for Rhodamine B

  • Corresponding author: LI Ai-Chang, aichangli@hotmail.com
  • Received Date: 11 March 2016
    Revised Date: 31 July 2016

Figures(11)

  • Ag@AgBr/Ni thin films plasmonic photocatalyst were prepared by electrochemical method. The surface morphology, phase structure, optical characteristics of the thin films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), respectively. Its photoelectrocatalytic properties and stability at negative bias under visible light were evaluated with rhodamine B (RhB) as a model compound. Using eletrochemical technique and a method of adding active species scavenger to the solution, mechanism of photoelectrocatalytic degradation of the films were explored. The results show that the Ag@AgBr/Ni thin film prepared under optimum condition are composed of AgBr microparticles whose surface has silver nanoparticles with a significant surface plasmon resonance (SPR) effects. The Ag@AgBr/Ni film is photoelectrocatalytically more active than TiO2/ITO (indium tin oxide) film. At optimum cathodic bias and under visible light irradiation in 12 min, the photoelectrocatalytic degradation rate of Ag@AgBr/Ni film is 10.2 times as much as that of porous TiO2(Degussa P25)/ITO film. Compared with no cathodic bias, the photoeletrocatalytic degradation rate of the Ag@AgBr/Ni thin film to RhB is increased by 2.0 times and the thin film has obvious photoelectric synergistic effect. The photoelectrocatalytic activity almost kept unchanged after five recycled experiments. The improvement in photoelectrocatalytic activity for Ag@AgBr/Ni thin films could be mainly attributed to the activation of nano Ag particles on the electrode for photocathode reaction (Conduction band reaction) with a significant SPR effects. Furthermore, the photoelctrocatalytic reaction mechanism of Ag@AgBr/Ni thin films for RhB at negative bias was proposed.
  • 加载中
    1. [1]

      Tong H, Ouyang S, Bi Y, et al. Adv. Mater., 2012, 24(2):229-251  doi: 10.1002/adma.201102752

    2. [2]

      HU Teng, YE Long-Qiang, LI Wen-Ling, et al. Chinese J. Inorg. Chem., 2014, 30 (8):1778-1782
       

    3. [3]

      Zhang J, Wu Y, Xing M, et al. Energy Environ. Sci., 2010, 3: 715-726  doi: 10.1039/b927575d

    4. [4]

      Addamo M, Augugliaro V, García-López E, et al. Catal. Today, 2005, 107/108:612-618  doi: 10.1016/j.cattod.2005.07.030

    5. [5]

      Zou Z, Ye J, Sayama K, et al. Nature, 200l, 414(6864):625-627  doi: 10.1038/414625a

    6. [6]

      LU Fei, MENG, Fan-Ming. Bull. Chin. Ceram. Soc., 2011, 30(1):116-119
       

    7. [7]

      Wang P, Huang B, Dai Y, et al. Phys. Chem. Chem. Phys., 2012, 14:9813-9825  doi: 10.1039/c2cp40823f

    8. [8]

      Wang Z, Liu Y, Huang B, et al. Phys. Chem. Chem. Phys., 2014, 16:2758-2774  doi: 10.1039/c3cp53817f

    9. [9]

      Lou Z, Wang Z, Huang B, et al. ChemCatChem, 2014, 6:2456-2476  doi: 10.1002/cctc.201402261

    10. [10]

      Tong H, Ouyang S, Bi Y, et al. Adv. Mater., 2012, 24:229-251  doi: 10.1002/adma.201102752

    11. [11]

      Burda C, Chen X, Narayanan R, et al. Chem. Rev., 2005, 105(4):1025-1102  doi: 10.1021/cr030063a

    12. [12]

      Brus L. Acc. Chem. Res., 2008, 41(12):1742-1749  doi: 10.1021/ar800121r

    13. [13]

      ZHU Ming-Shan, CHEN Peng-Lei, LIU Ming-Hua. Prog. Chem., 2013, 25(2/3): 210-220
       

    14. [14]

      Wang P, Huang B B, Qin X Y, et al. Angew. Chem., Int. Ed., 2008, 47:7931-7933  doi: 10.1002/anie.v47:41

    15. [15]

      Wang P, Huang B B, Zhang X Y, et al. Chem. Eur. J., 2009, 15:1821-1824  doi: 10.1002/chem.v15:8

    16. [16]

      Zhu M S, Chen P L, Liu M H. ACS Nano, 2011, 5(6):4529-4536  doi: 10.1021/nn200088x

    17. [17]

      Kuai L, Geng B Y, Chen X T, et al. Langmuir, 2010, 26(24): 18723-18727  doi: 10.1021/la104022g

    18. [18]

      AN Wei-Jia, LIU Li, LI XIN-Lei, et al. Chinese J. Inorg. Chem., 2015, 31(2): 329-337
       

    19. [19]

      LENG Wen-Hua, ZHU Hong-Qiao. J. Electrochem., 2013, 19(5):437-443
       

    20. [20]

      YANG Juan, DAI Jun, ZAO Jin-Cai, et al. Chin. Sci. Bull., 2009, 54:2196-2204
       

    21. [21]

      Yang J, Chen C, Ji H, et al. J. Phys. Chem. B, 2005, 109: 21900-21907  doi: 10.1021/jp0540914

    22. [22]

      YANG Juan, MIU Juan, DAI Jun, et al. J. Henan Polytechnic Univ., 2010, 29: 259-265  doi: 10.3969/j.issn.1673-9787.2010.02.024

    23. [23]

      JI Hong-Wei, MA Wan-Hong, HUANG Ying-Ying, et al. Chin. Sci. Bull., 2003, 48:2199-2204  doi: 10.3321/j.issn:0023-074X.2003.21.001

    24. [24]

      LI Ai-Chang, LI Jian-Fei, LIU Ya-Lu, et al. Acta Chim. Sinica, 2013, 71(5):815-821
       

    25. [25]

      YANG Yong-Biao, ZHANG Zheng-Fu, CHEN Qing-Hua, et al. Yunnan Metallurge, 2004, 33(4):20-22
       

    26. [26]

      LI Ai-Chang, ZHU Ning-Ning, LI Jing-Hong, et al. Chinese J. Inorg. Chem., 2015, 31(4):681-688
       

    27. [27]

      Wang D, Duan Y, Luo Q, et al. Desalination, 2011, 270:174-180  doi: 10.1016/j.desal.2010.11.042

    28. [28]

      Zhu M, Chen P, Liu M. Langmuir, 2012, 28:3385-3390  doi: 10.1021/la204452p

    29. [29]

      HU Jin-Shan, WANG Huan, LIU Li, et al. J. Mol. Catal., 2013, 27(5):452-458
       

    30. [30]

      Zhou X, Liu G, Yu J, et al. J. Mater. Chem., 2012, 22:21337-21354  doi: 10.1039/c2jm31902k

    31. [31]

      Rycenga M, Cobley C M, Zeng J, et al. Chem. Rev., 2011, 111:3669-3712  doi: 10.1021/cr100275d

    32. [32]

      LIU Hua-Jun, PENG Tian-You, PENG Zheng-He, et al. J. Wuhan Univ.: Nat. Sci. Ed., 2007, 53(2):127-132
       

    33. [33]

      NIE Long-Hui, HUANG Zheng-Qing, XU Hong-Tao, et al. Chin. J. Catal., 2012, 33 (7):1209-1216
       

    34. [34]

      LI Ai-Chang, LI Gui-Hua, ZHENG Yan, et al. Acta Phys.-Chim. Sin., 2012, 28 (2):457-464
       

    35. [35]

      ZHOU Li, DENG Hui-Ping, ZHANG Wei. Prog. Chem., 2015, 27(4):349-360
       

  • 加载中
    1. [1]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    2. [2]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    7. [7]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    10. [10]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    11. [11]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    12. [12]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    13. [13]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

Metrics
  • PDF Downloads(1)
  • Abstract views(1216)
  • HTML views(219)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return