Effect and Mechanism of Co-catalyst Co-Pi Impregnation by Light Assisted Electrodeposition on Solar Water Splitting Properties of Ta3N5 Photoanodes
- Corresponding author: LI Ming-Xue, lmx_cumt@126.com
Citation: LI Ming-Xue, HAN Kui, LI Yan. Effect and Mechanism of Co-catalyst Co-Pi Impregnation by Light Assisted Electrodeposition on Solar Water Splitting Properties of Ta3N5 Photoanodes[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(3): 441-449. doi: 10.11862/CJIC.2016.053
Lewis N S. Science, 2007, 315(5813):798-801
doi: 10.1126/science.1137014
Bahadori A, Nwaoha C. Renew. Sust. Energy Rev., 2013, 18: 1-5
doi: 10.1016/j.rser.2012.10.003
Khan S U M, Al-Shahry M, Ingler W B. Science, 2002, 297 (5590):2243-2245
doi: 10.1126/science.1075035
Sun Yan, Yan Kang-ping. Chinese J. Inorg. Chem., 2014, 30(12):2740-2746
Fujishima A, Honda K. Nature, 1972, 238(5358):37-8
doi: 10.1038/238037a0
Huang Yi-Cao, Zhao Zhe-Fei, Zheng Hua-Jun, et al. Chinese J. Inorg. Chem., 2015, 31(1):133-139
Grätzel M. Nature, 2001, 414(6861):338-344
doi: 10.1038/35104607
Kronawitter C X, Vayssieres L, Shen S, et al. Energy Environ. Sci., 2011, 4(10):3889-3899
doi: 10.1039/c1ee02186a
Li G Q, Bai Y, Zhang W F, et al. Mater. Chem. Phys., 2013, 139(2):1009-1013
Li M, Luo W, Cao D, et al. Angew. Chem. Int. Ed., 2013, 52 (42):11016-11020
doi: 10.1002/anie.201305350
Liu G, Shi J, Zhang F, et al. Angew. Chem. Int. Ed., 2014, 53(28):7295-7299
doi: 10.1002/anie.201404697
Zhen C, Wang L, Liu G, et al. Chem. Commun., 2013, 49 (29):3019-3021
doi: 10.1039/c3cc40760h
Liao M, Feng J, Luo W, et al. Adv. Funct. Mater., 2012, 22 (14):3066-3074
doi: 10.1002/adfm.v22.14
Li Y, Takata T, Cha D, et al. Adv. Mater., 2013, 25(1):125-131
doi: 10.1002/adma.201202582
Higashi M, Domen K, Abe R. Energy Environ. Sci., 2011, 4 (10):4138-4147
doi: 10.1039/c1ee01878g
Li Z S, Luo W J, Zhang M L, et al. Energy Environ. Sci., 2013, 117:6172-6184
Tilley S D, Cornuz M, Sivula K, et al. Angew. Chem. Int. Ed., 2010, 49(36):6405-6408
doi: 10.1002/anie.201003110
Kanan M W, Nocera D G. Science, 2008, 321(5892):1072-1075
doi: 10.1126/science.1162018
Zhong D K, Cornuz M, Sivula K, et al. Energy Environ. Sci., 2011, 4(5):1759-1764
doi: 10.1039/c1ee01034d
Pilli S K, Deutsch T G, Furtak T E, et al. Phys. Chem. Chem. Phys., 2012, 14:7032-7039
doi: 10.1039/c2cp40673j
Kronawitter C X, Mao S S, Antoun B R. Appl. Phys. Lett., 2011, 98(9):092108
doi: 10.1063/1.3552711
Klahr B, Gimenez S, Fabregat-Santiago F, et al. J. Am. Chem. Soc., 2012, 134(9):4294-4302
doi: 10.1021/ja210755h
Klahr B, Gimenez S, Fabregat-Santiago F, et al. Energy Environ. Sci., 2012, 5(6):7626-7636
doi: 10.1039/c2ee21414h
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
Potential during the photocurrent measurement: 1.1 V
(a), (e) Ta3N5 without Co-Pi loading; after Co-Pi loading with loading charge of 1.9 mC·cm-2, under loading potential of 0.35 V (b), 0.55 V (c), 0.75 V (d); after Co-Pi loading under loading potential at 0.55 V, with loading charge of 1.6 mC·cm-2 (f), 1.9 mC·cm-2 (g) and 2.4 mC·cm-2 (h)
Light source is the Xenon lamp, the potential during the i-t test is 1.23 V
Potential during the photocurrent measurement: 1.1 V