Syntheses, Structures and Properties of Three Tri-nuclear Copper Clusters Based on Wells-Dawson Polyoxometalate
- Corresponding author: YING Jun, ying@bhu.edu.cn
Citation:
YING Jun, NING Ya-Li, HOU Xue, TIAN Ai-Xiang. Syntheses, Structures and Properties of Three Tri-nuclear Copper Clusters Based on Wells-Dawson Polyoxometalate[J]. Chinese Journal of Inorganic Chemistry,
;2016, 32(2): 267-274.
doi:
10.11862/CJIC.2016.036
Rubinstein A, Jiménez-Lozanao P, Carbó J J, et al. J. Am. Chem. Soc., 2014, 136(31):10941-10948
doi: 10.1021/ja502846h
Shi D Y, He C, Qi B, et al. Chem. Sci., 2015, 6(2):1035-1042
doi: 10.1039/C4SC02362E
Douvas A M, Makarona E, Glezos N. ACS Nano, 2008, 2(4): 733-742
doi: 10.1021/nn700333j
Schulz-Dobrick M, Jansen M. Inorg. Chem., 2007, 46(11): 4380-4382
doi: 10.1021/ic700434x
Zhang H, Yu K, Wang C M, et al. Inorg. Chem., 2014, 53(23): 12337-12347
doi: 10.1021/ic5014973
Zheng S T, Zhang J, Clemente-Juan J M, et al. Angew. Chem. Int. Ed., 2009, 48(39):7176-7179
doi: 10.1002/anie.v48:39
Wang X L, Liu X J, Tian A X, et al. Dalton Trans., 2012, 41 (32):9587-9589
doi: 10.1039/c2dt00039c
Lü J, Lin J X, Zhao X L, et al. Chem. Comm., 2012, 48(5): 669-671
doi: 10.1039/C1CC16268C
Pang H J, Ma H Y, Peng J, et al. CrystEngComm, 2011, 13 (23):7079-7085
doi: 10.1039/c1ce05648d
Wang X, Peng J, Liu M G, et al. CrystEngComm, 2012, 14 (9):3220-3226
doi: 10.1039/c2ce06577k
Sha J Q, Peng J, Lan Y Q, et al. Inorg. Chem., 2008, 47(12): 5145-5153
doi: 10.1021/ic702407y
Tian A X, Ying J, Peng J, et al. Inorg. Chem., 2008, 47(8): 3274-3283
doi: 10.1021/ic7023082
Wang X L, Wang Y F, Liu G C, et al. Dalton Trans., 2011, 40(36):9299-9305
doi: 10.1039/c1dt10776c
Wang X L, Li N, Tian A X, et al. Dalton Trans., 2013, 42 (41):14856-14865
doi: 10.1039/c3dt51610e
Zhang C D, Liu S X, Sun C Y, et al. Cryst. Growth Des., 2009, 9(8):3655-3660
doi: 10.1021/cg900391q
Demko Z P, Sharpless K B. J. Org. Chem., 2001, 66(24): 7945-7950
doi: 10.1021/jo010635w
(a) Sheldrick G M. Acta Crystallogr. Sect. A, 2008, 64(1):112-122(b) Sheldrick G M. SHELXS-97, University of Göttingen, Germany, 1997.
Spek A L. Acta Crystallogr. Sect. C: Struct. Chem., 2015, 71: 9-18
doi: 10.1107/S2053229614024929
Tian A X, Ning Y L, Ying J, et al. CrystEngComm, 2015, 17 (29):5569-5578
doi: 10.1039/C5CE00768B
Yang Y, Liu S X, Li C C, et al. Inorg. Chem. Comm., 2012, 17:54-57
doi: 10.1016/j.inoche.2011.12.013
Brown I D, Altermatt D. Acta Crystallogr. Sect. B: Struct. Sci., 1985, 41(4):244-247
doi: 10.1107/S0108768185002063
Sadakane M, Steckhan E. Chem. Rev., 1998, 98(1):219-237
doi: 10.1021/cr960403a
Tinghui AN , Dong XIANG , Jiaqi LI , Jiawei WANG , Shuming YU , Nan WANG , Kedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012
Deyun Ma , Fenglan Liang , Qingquan Xue , Yanping Liu , Chunqiang Zhuang , Shijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190
Ping LI , Geng TAN , Xin HUANG , Fuxing SUN , Jiangtao JIA , Guangshan ZHU , Jia LIU , Jiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
Bowen Liu , Jianjun Zhang , Han Li , Bei Cheng , Chuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121
Ze Luo , Yukun Zhu , Yadan Luo , Guangmin Ren , Yonghong Wang , Hua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166
Yanping Qiu , Jiatong Zhang , Linping Li , Yangqin Gao , Ning Li , Lei Ge . MOF-derived g-C3N4/ZnIn2S4 S-scheme heterojunction: interface-engineering enhanced photocatalytic NO conversion. Acta Physico-Chimica Sinica, 2026, 42(4): 100175-0. doi: 10.1016/j.actphy.2025.100175
Hydrogen atoms are omitted for clarity; some coordination water are omitted in (b)
Hydrogen atoms are omitted for clarity; some coordination water are omitted in (b)
From inner to outer: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280 and 300 mV·s-1, respectively; Scan rate: 200 mV·s-1