Photocatalytic Killing Effect of Fe3O4-TiO2 Nanoparticles on Hepatoma Carcinoma Cells for Targeting Photodynamic Therapy
- Corresponding author: ZHANG Ai-Ping, zhangap1@163.com
Citation: WANG Ling, Wen WEN, LI Sha, FU Zheng-Qing, TONG Yue-Ju, WANG Juan, HAN Dong, ZHANG Ai-Ping. Photocatalytic Killing Effect of Fe3O4-TiO2 Nanoparticles on Hepatoma Carcinoma Cells for Targeting Photodynamic Therapy[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(3): 393-404. doi: 10.11862/CJIC.2016.033
Li H N, Cui Y N, Liu J, et al. J. Mater. Chem. B, 2014, 2: 3500-3510
doi: 10.1039/C4TB00321G
Jia Z Z, Tian F, Jiang G M. Curr. Ther. Res. Clin. Exp., 2013, 74:41-43
doi: 10.1016/j.curtheres.2012.12.006
Hou Z Y, Zhang Y X, Deng K R, et al. ACS Nano, 2015, 9 (3):2584-2599
doi: 10.1021/nn506107c
Master A, Livingston M, Gupta A S. J. Controlled Release, 2013, 168(1):88-102
doi: 10.1016/j.jconrel.2013.02.020
Chen Z L, Sun Y, Huang P, et al. Nanoscale Res. Lett., 2009, 4(5):400-408
doi: 10.1007/s11671-009-9254-5
Levy J, Obochi M. Photochem. Photobiol., 1996, 64(5):737-739
doi: 10.1111/php.1996.64.issue-5
Konan Y N, Gurny R, Allémann E. J. Photochem. Photobiol. B, 2002, 66(2):89-106
doi: 10.1016/S1011-1344(01)00267-6
Dougherty T J. Photochem. Photobiol., 1987, 45(6):879-889
Roy I, Ohulchanskyy T Y, Pudavar H E, et al. J. Am. Chem. Soc., 2003, 125(26):7860-7865
doi: 10.1021/ja0343095
Dodd N J F, Jha A N. Mutat. Res. Fundam. Mol. Mech. Mutagen., 2009, 660(1/2):79-82
Wang J, Guo Y W, Liu B, et al. J. Lumin., 2011, 131(2):231-237
Neghabi M, Zadsar M, Ghorashi S M B. Mater. Sci. Semicond. Process., 2014, 17:13-20
doi: 10.1016/j.mssp.2013.08.002
Cai R X, Kubota Y, Shuin T, et al. Cancer Res., 1992, 52(8): 2346-2348
Rozhkova E A, Ulasov I, Lai B, et al. Nano Lett., 2009, 9(9): 3337-3342
doi: 10.1021/nl901610f
Wang S Z, Gao R M, Zhou F M, et al. J. Mater. Chem., 2004, 14(4):487-493
doi: 10.1039/b311429e
Gao D, Agayan R R, Xu H, et al. Nano Lett., 2006, 6(11): 2383-2386
doi: 10.1021/nl0617179
Jain T K, Roy I, De T K, et al. J. Am. Chem. Soc., 1998, 120 (43):11092-11095
doi: 10.1021/ja973849x
Jain T K, Reddy M K, Morales M A, et al. Mol. Pharmaceu-tics, 2008, 5(2):316-327
doi: 10.1021/mp7001285
Weissleder R, Cheng H C, Bogdanova A, et al. J. Magn. Reson. Imaging, 1997, 7(1):258-263
doi: 10.1002/(ISSN)1522-2586
Saviuc C, Grumezescu A M, Holban A, et al. Biointerface Res. Appl. Chem., 2011, 1(2):64-71
Mahmoudi M, Hosseinkhani H, Hosseinkhani M, et al. Chem. Rev., 2011, 111(2):253-280
doi: 10.1021/cr1001832
Ho D, Sun X, Sun S. Acc. Chem. Res., 2011, 44(10):875-882
doi: 10.1021/ar200090c
Chen Y, Song B H, Lu L, et al. Nanoscale, 2013, 5:6797-6803
doi: 10.1039/c3nr01826a
Liang X Z. Mater. Lett., 2014, 137:447-449
doi: 10.1016/j.matlet.2014.09.083
Zhou L, He B Z, Huang J C. ACS Appl. Mater. Interfaces, 2013, 5(17):8678-8685
doi: 10.1021/am402334f
Rocher V, Siaugue J M, Cabuil V. Water Res., 2008, 42(4/ 5):1290-1298
Zhao F Y, Zhang B L, Feng L Y. Mater. Lett., 2012, 68:112-114
doi: 10.1016/j.matlet.2011.09.116
Zhang Y, Kohler N, Zhang M Q. Biomaterials, 2002, 23(7): 1553-1561
doi: 10.1016/S0142-9612(01)00267-8
Mahmoudi M, Sant S, Wang B, et al. Adv. Drug Delivery Rev., 2011, 63(1/2):24-46
Alexiou C, Schmid R J, Jurgons R, et al. Eur. Biophys. J., 2006, 35(5):446-450
doi: 10.1007/s00249-006-0042-1
Corato R D, Béalle G, Kolosnjaj-Tabi J, et al. ACS Nano, 2015, 9(3):2904-2916
doi: 10.1021/nn506949t
WEN Wen, GAO Xiao-Ya, SONG Zhi-Ying, et al. Acta Phys.-Chim. Sin., 2012, 28(9):2221-2230
Plumb J A. Methods Mol. Med., 2004, 88:165-169
Markovic Z M, Harhaji-Trajkovic L M, Todorovic-Markovic B M, et al. Biomaterials, 2011, 32(4):1121-1129
doi: 10.1016/j.biomaterials.2010.10.030
Scaduto R C, Grotyohann L W. Biophys. J., 1999, 76(1):469-477
doi: 10.1016/S0006-3495(99)77214-0
Bernard B K, Osheroff M R, Hofmann A, et al. J. Toxicol. Environ. Health, 1990, 29:417-429
Linnainmaa K, Kivipensas P, Vainio H. Toxicol. in Vitro, 1997, 11(4):329-335
doi: 10.1016/S0887-2333(97)00000-3
Thurn K T, Arora H, Paunesku T, et al. Nanomedicine, 2011, 7(2):123-130
doi: 10.1016/j.nano.2010.09.004
Lagopati N, Kitsiou P V, Kontos A I, et al. J. Photochem. Photobiol. A, 2010, 214(2/3):215-223
Zhu R R, Wang S L, Chao J. Mater. Sci. Eng. C, 2009, 29 (3):691-696
doi: 10.1016/j.msec.2008.12.023
Townley H E, Rapa E, Wakefield G, et al. Nanomedicine, 2011, 8(4):526-536
Maity A, Hwang A, Janss A, et al. Oncogene, 1996, 13(8): 1647-1657
Kao G D, McKenna W G, Maity A, et al. Cancer Res., 1997, 57(4):753-758
WEN Wen, GAO Xiao-Yao, ZHANG Ai-Ping, et al. Chin. J. Appl. Chem., 2012, 28 (9):663-667
Wyllie A H. Brit. Med. Bull., 1997, 53(3):451-465
doi: 10.1093/oxfordjournals.bmb.a011623
Tang Y, Wang F, Jin C, et al. Environ. Toxicol. Phar., 2013, 36(1):66-72
doi: 10.1016/j.etap.2013.03.006
SHEN Da-Leng, WU Chao-Qun. Cell Biology. Shanghai: Fudan University Press, 2006.
King K L, Cidlowski J A. Annu. Rev. Physiol., 1998, 60:601-617
doi: 10.1146/annurev.physiol.60.1.601
Green D R, Reed J C. Science, 1998, 281(5381):1309-1312
doi: 10.1126/science.281.5381.1309
Kroemer G, Zamzami N, Susin S A. Immunol. Today, 1997, 18(1):44-51
doi: 10.1016/S0167-5699(97)80014-X
Bemardi P, Scorrano L, Colonna R, et al. Eur. J. Biochem., 1999, 264(3):687-701
doi: 10.1046/j.1432-1327.1999.00725.x
Zoratti M, Szabo I. Biochim. Biophys. Acta, 1995, 1241(2): 139-176
doi: 10.1016/0304-4157(95)00003-A
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yu Qin , Mingyang Huang , Chenlu Huang , Hannah L. Perry , Linhua Zhang , Dunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Data were represented as mean ±SD (n=3); Remark: compared with the control group, *P > 0.05, **P < 0.05
Data were represented as mean ±SD (n=3); Remark: compared with the irradiation time of 0 min corresponding to each group, *P < 0.05, **P > 0.05
(a) Control of cell; (b) Control of visible light irradiation; (c) Fe3O4-TiO2 NPs (100 μg·mL-1); (d) Fe3O4-TiO2 NPs (200 μg·mL-1); (e) Fe3O4-TiO2 NPs (300 μg·mL-1); (f) TiO2 (300 μg·mL-1); Data were represented as mean ±SD (n=3);Remark: compared with the magnetic field strength of 1.0 T corresponding to each group, *P < 0.05, **P > 0.05
(a) Normal HepG2 cells; (b) Visible light irradiation; (c) Ultraviolet irradiation; (d) Fe3O4-TiO2 NPs irradiated 30 min by visible light; (e) Fe3O4-TiO2 NPs irradiated 30 min by ultraviolet; (f) Fe3O4-TiO2 NPs irradiated 30 min by ultraviolet under external magnetic field; (g) Fe3O4-TiO2 NPs irradiated 30 min by visible light under external magnetic field; Scale bar=100 μm
(a) Control of cell; (b) TiO2 excited by ultraviolet; (c) Fe3O4-TiO2 NPs excited by ultraviolet; (d) TiO2 excited by visible light; (e) Fe3O4-TiO2 NPs excited by visible light; Data were represented as mean ± SD (n=3); Remark: compared with the control of cell, *P < 0.05, **P > 0.05
(a) Control of cell; (b) Control of visible light; (c) TiO2 excited by visible light; (d) Fe3O4-TiO2 NPs excited by visible light; (e) Control of ultraviolet; (f) TiO2 excited by ultraviolet; (g) Fe3O4-TiO2 NPs excited by ultraviolet; Data were represented as mean ±SD (n=3); Remark: compared with the control of cell, *P < 0.05, **P > 0.05; Comparison of the two Fe3O4-TiO2 NPs groups under irradiation of different light source, #P > 0.05
(a) Control of cell; (b) TiO2 excited by visible light; (c) Fe3O4-TiO2 NPs excited by visible light