Citation: HUANG Li-Hua, CHEN Shan-Hu, GONG Mao-Chu, CHEN Yao-Qiang. The Structure and Performance of Pd/Ce0.65Zr0.35O2 Catalysts Prepared by Soft-Hard Template Method[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(2): 193-201. doi: 10.11862/CJIC.2016.004 shu

The Structure and Performance of Pd/Ce0.65Zr0.35O2 Catalysts Prepared by Soft-Hard Template Method

  • Corresponding author: CHEN Yao-Qiang, nic7501@scu.edu.cn
  • Received Date: 15 July 2015
    Revised Date: 7 September 2015

Figures(10)

  • Ce0.65Zr0.35O2 (CZ) was synthesized by soft-hard template method and its corresponding Pd only catalyst was also prepared. The intermediate product and CZ were characterized by energy dispersive spectrometer (EDS) and laser raman spectroscopy. The Pd/CZ catalyst was investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2-physical adsorption, oxygen storage capacity (OSC), impulse CO chemisorption and H2-temperature programmed reduction (H2-TPR) technologies. It was found that soft-hard template method offered catalyst with high surface area and pore volume, enhanced the ratio of Ce3+, Pd dispersion and homogeneity of solid solution. It also imparted catalyst excellent three-way catalytic performance before and after aging. After aging, the light-off temperatures to C3H8, CO and NO were 318, 180 and 210 ℃ respectively, which were lower than aged catalyst synthesised by soft template, behaved strong anti-sintering property.
  • 加载中
    1. [1]

      Kim J R, Myeong W J, Ihm S K. Appl. Catal. B: Environ., 2007, 71(1/2):57-63
       

    2. [2]

      Le Phuc N, Corbos E C, Courtois X, et al. Appl. Catal. B: Environ., 2009, 93(1/2):12-21
       

    3. [3]

      Li G F, Wang Q Y, Zhao B, et al. J. Mol. Catal. A: Chem., 2010, 326(1/2):69-74
       

    4. [4]

      Morikawa A, Kikuta K, Suda A, et al. Appl. Catal. B: Environ., 2009, 88(3/4):542-549
       

    5. [5]

      Lan L, Chen S H, Zhao M, et al. J. Mol. Catal. A: Chem., 2014, 394(15):10-21
       

    6. [6]

      Wang Q Y, Zhao B, Li G F, et al. Environ. Sci. Technol., 2010, 44(10):3870-3875  doi: 10.1021/es903957e

    7. [7]

      Fuentes, R O, Baker T. J. Phys. Chem. C, 2009, 113(3):914-924  doi: 10.1021/jp808825c

    8. [8]

      Lee J, Oriall M C, Warren S C, et al. Nat. Mater., 2008, 7(3): 222-228  doi: 10.1038/nmat2111

    9. [9]

      Si R, Zhang Y W, Li S J, et al. J. Phys. Chem. B, 2004, 108 (33):12481-12488  doi: 10.1021/jp048084b

    10. [10]

      Liu L, Liu B, Dong L, et al. Appl. Catal. B: Environ., 2009, 90:578-586  doi: 10.1016/j.apcatb.2009.04.019

    11. [11]

      Oliveira C F, Garcia F A C, Araújo D R, et al. Appl. Catal. A: Gen., 2012, 413(31):292-300
       

    12. [12]

      Liu L, Yao Z, Liu B, et al. J. Catal., 2010, 275(1):45-60  doi: 10.1016/j.jcat.2010.07.024

    13. [13]

      Xie G Q, Lu J Q, Zheng H Y, et al. J. Alloys Compd., 2010, 493(1/2):169-174
       

    14. [14]

      Bozo C, Gaillard F, Guilhaume N. Appl. Catal. A: Gen., 2001, 220(1/2):69-77
       

    15. [15]

      Esteves P, Wu Y, Dujardin C, et al. Catal. Today, 2011, 176 (1):453-453  doi: 10.1016/j.cattod.2010.10.068

    16. [16]

      Atribak I, Bueno-Lopez A, Garcia-Carcia A. J. Mol. Catal. A: Chem., 2009, 30(1/2):103-110
       

    17. [17]

      Beche E, Charvin P, Perarnau D, et al. Surf. Interface Anal., 2008, 40(3/4):264-267
       

    18. [18]

      Masui T, Ozaki T, Machida K, et al. J. Alloys Compd., 2000, 303(24):49-55
       

    19. [19]

      Guo J X, Shi Z H, Wu D D, et al. Mater. Res. Bull., 2013, 48(2):495-503  doi: 10.1016/j.materresbull.2012.11.006

    20. [20]

      Kaspar J, Fornasiero P. J. Solid State Chem., 2003, 171(1/2): 19-29
       

    21. [21]

      CHEN Shan-Hu, YAN Cao-Yang, LAN Li, et al. Chinese J. Inorg. Chem., 2012, 28(5):1001-1008
       

    22. [22]

      Fan J, Wu X D, Liang Q, et al. Appl. Catal. B: Environ., 2008, 81(1/2):38-48
       

    23. [23]

      Boaro M, de Leitenburg C, Dolcetti G, et al. J. Catal., 2000, 193(2):338-347  doi: 10.1006/jcat.2000.2887

    24. [24]

      Li C L, Gu X, Wang Y Q, et al. J. Rare Earth, 2009, 27(2): 211-215  doi: 10.1016/S1002-0721(08)60221-5

    25. [25]

      Dasari H P, Ahn K, Park S Y, et al. Int. J. Hydrogen Energy, 2013, 38(14):6097-6103  doi: 10.1016/j.ijhydene.2013.01.145

    26. [26]

      Nagai Y, Yamamoto T, Tanaka T, et al. Catal. Today, 2002, 74(3/4):225-234
       

    27. [27]

      Raju V, Jaenicke S, Chuah G K. Appl. Catal. B: Environ., 2009, 91(1/2):92-100
       

    28. [28]

      Sekizawa K, Widjaja H, Maeda S, et al. Appl. Catal. A: Gen., 2000, 200(1/2):211-217
       

    29. [29]

      Liu L C, Wei T, Dai H X. Catal. Today, 2010, 153(3/4):162-169
       

    30. [30]

      Fan J, Wu X D, Liang Q, et al. Appl. Catal. B: Environ., 2008, 81(1/2):38-48
       

    31. [31]

      Zhao B, Wang Q Y, Li G F, et al. J. Environ. Chem. Eng., 2013, 1(3):534-543  doi: 10.1016/j.jece.2013.06.018

    32. [32]

      Osorio G P, Moyado S F, Petranovskii V, et al. Catal. Lett., 2006, 110(1/2):53-60
       

    33. [33]

      Yang X, Yang L Y, Lin S Y, et al. Chin. J. Catal., 2014, 35(8):1267-1280  doi: 10.1016/S1872-2067(14)60157-1

    34. [34]

      Bueno-Lopez A, Such-Basanez I, De Lecea S M C. J. Catal., 2006, 244(1):102-112  doi: 10.1016/j.jcat.2006.08.021

    35. [35]

      CUI Ya-Juan, FANG Rui-Mei, SHANG Hong-Yan, et al. Chinese J. Inorg. Chem., 2015, 31(5):899-1002
       

    36. [36]

      Huang L H, Chen S H, Zhu Y, et al. J. Rare Earths, 2013, 31(5):461-469  doi: 10.1016/S1002-0721(12)60304-4

    37. [37]

      Dimonte R, Fornasiero P, Kasper J, et al. Appl. Catal. B: Environ., 2004, 24(3/4):157-167
       

    38. [38]

      YAN Chao-Yang, LAN Li, CHEN Shan-Hu, et al. Chin. J. Catal., 2012, 33(2):336-341
       

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(1)
  • Abstract views(546)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return